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Abstract. Under mild conditions, the Pareto set of a continuous multi-objective
optimization problem exhibits certain regularity. We have recently advocated tak-
ing into consideration such regularity in designing multi-objective evolutionary
algorithms. Following our previous work on using Local Principal Component
Analysis for capturing the regularity, this paper presents a new approach for ac-
quiring and using the regularity of the Pareto set in evolutionary algorithms. The
approach is based on the Generative Topographic Mapping and can be regarded
as an Estimation of Distribution Algorithm. It builds models of the distribution
of promising solutions based on regularity patterns extracted from the previous
search, and samples new solutions from the models thus built. The proposed al-
gorithm has been compared with two other state-of-the-art algorithms, NSGA-II
and SPEA2 on a set of test problems.

1 Introduction

Multi-objective optimization problems (MOP) arise from many practical applications
where several objectives have to be optimized. In this paper, we consider the following
continuous MOP:

minimize F (x) = (f1(x), f2(x), . . . , fm(x))T (1)
subject to x ∈ X

where X ∈ Rn is the decision (variable) space, F : X → Rm consists of m continuous
objective functions and Rm is called the objective space. Very often, no point in X
minimizes all the objectives simultaneously. The best tradeoffs among these objectives
can be defined in terms of Pareto optimality.

Let u, v ∈ Rm, u is said to dominate v if and only if ui ≤ vi for every i ∈
{1, 2, . . . , m} and uj < vj for at least one index j ∈ {1, 2, . . . , m}. A point x∗ ∈ S is
Pareto optimal to (1) if there is no point x such that F (x) dominates F (x∗). F (x∗) is
then called a Pareto optimal (objective) vector. The set of all the Pareto optimal points
is called the Pareto set (PS) and the set of all the Pareto optimal objective vectors is the
Pareto front (PF).

A number of evolutionary algorithms (EA) for dealing with multi-objective opti-
mization problems , have been suggested over the past two decades [1, 2]. These multi-
objective evolutionary algorithms (MOEA) work with a population of candidate solu-
tions and are able to produce a set of Pareto optimal vectors for approximating the PF.
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Most of these algorithms can be regarded as extensions of EAs for scalar optimization
problems. Selection, crossover and mutation are major operators in EAs. Conventional
crossover and mutation operators can be used without any modification in MOEAs (al-
though these operators may not lead to satisfactory performances in MOEAs), while the
selection operators in scalar optimization EAs cannot be directly applied to MOPs. A
major research issue in the area of MOEAs is the so-called fitness assignment [3], which
assigns a relative fitness to each individual in a population for facilitating selection.

Estimation Distribution Algorithms (EDA) are a new class of EAs [4–6]. There
is no traditional crossover or mutation in EDAs. Instead they explicitly extract global
statistical information from the previous search and build a posterior probability dis-
tribution model of promising solutions, based on the extracted information. New trial
solutions are sampled from the model thus built. Several EDAs for continuous MOPs
have been proposed, among them are Mixture-based Iterated Density Estimation Evolu-
tionary Algorithms (MIEDA) [7], EDAs based on Bayesian networks [8] and Voronoi-
based Estimation of Distribution Algorithm (VEDA) [9].

Under mild conditions, the PS (or PF) of a continuous MOP is a piecewise con-
tinuous (m − 1) dimensional manifold where m is the number of the objectives. This
property has been used in several mathematical programming methods for approximat-
ing the PF [10]. In fact, it has also been found that, for the most widely-used test
problems of continuous multi-objective optimization in the evolutionary computations,
their PS are (m − 1) dimensional linear or piecewise linear manifolds [11, 12]. This
regularity has been ignored in most current MOEAs.

Recently, we suggested that such regularity should be used in MOEAs for improving
the algorithms’ performances. We have proposed three EDAs [13–15] which employ
Local Principal Component Analysis algorithms [16] for capturing and modeling the
regularity of the Pareto set in a continuous MOP. The experimental results are very
encouraging, the algorithms outperform NSGA-II [17] and SPEA2 [3] on several test
problems with high interactions among the decision variables. Bueche et al [18] also
attempted to use self-organizing mapping to learn the shape of the Pareto set of a MOP,
although they have not explicitly discussed their method in the context of the regularity.

The Generative Topographic Mapping (GTM) [19] is a tool for extracting regular-
ity from data. This paper continues our work on improving MOEAs by utilizing the
regularity. We propose to use GTM in EDAs for extracting the regularity of the PS of
(1). GTM can provide a probability model of promising solutions in terms of latent
variables. Such a model is very easy for sampling new trial solutions.

The remainder of this paper is organized as follows: Section 2 gives a brief intro-
duction to GTM. Section 3 presents the details of the model building and sampling
techniques. The framework of the proposed algorithm is given in Section 4. Section 5
compares our proposed algorithm with NSGA-II and SPEA2 on a set of test problems.
The final section provides concluding remarks.

2 The Generative Topographic Mapping

GTM can discover some underlying regularity of a set of unlabeled data in a high di-
mensional space. It considers a nonlinear transformation mapping from a latent-variable
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space with lower dimensionality L to the data space:

x = y(v, W ) = Wφ(v)

where x is a point in the data space, v is the latent variable. W is a parameter matrix
and φ(v) is a vector of prefixed basis functions.

GTM models the distribution of data x, for given value of W and v, to be a radially-
symmetric Gaussian centered on y(v, W ) with variance β−1:

p(x|v, W, β) = (
β

2π
)−n/2exp{−β

2
‖Wφ(v)− x‖2}

Therefore, x = Wφ(v) can be envisaged as a central L-D manifold of the data, as
illustrated in Fig. 1.

Fig. 1. Generative Topographic Mapping from 1-D latent space (left) to data space (right)

Given a number of points x1, x2, . . . , xN in the data space, GTM estimates the
values of W and β by maximizing the following log likelihood:

L(W,β) = ln
N∏

i=1

∫
p(xi|v, W, β)p(v)dv.

where p(v) is the distribution of v. In our experiments, we use the GTM code developed
by NCRG group at Aston University1. The details of GTM can be found in [19].

3 Model Building Based on GTM

3.1 Basic Idea

The population in a MOEA for (1) will hopefully approximate to the PS and be uni-
formly distributed around the PS as the search goes on. Therefore, we can envisage the

1 the source codes are from http://www.ncrg.aston.ac.uk/GTM
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solutions in the population as independent observations of a random vector whose cen-
ter is an approximation of the PS of (1). Since the PS is a piecewise continuous (m−1)
dimensional manifold, a promising solution x can be regarded as an observation of the
following n-D random vector:

ξ = ξ1 + ξ2 (2)

where ξ1 is uniformly distributed along a (m − 1) dimensional manifold Φ. ξ2 is a
random noise vector. Φ is called the central manifold of ξ in this paper. For simplicity,
we assume that ξ1 and ξ2 are independent of each other.

Under the above assumption, the modeling of promising solutions consists of two
tasks: the modeling of the central manifold Φ and noise ξ2.

3.2 Modeling and Sampling

Given a population, which is a data set in Rn, we apply the GTM with (m − 1) latent
variables to it (where m is the number of objectives) and obtain the values of W and β.
In GTM training procedure, we set the range of the latent variable v = (v1, . . . , vm−1)
as:

−1 ≤ vi ≤ 1 i = 1, 2, . . . , m− 1.

Since the population often can not cover the whole PS thus the central manifold found
can only approximate part of the PS. To overcome this problem and explore more
ranges, in [13] , [14] and [15], the search range is extended along the center mani-
fold when we do sampling. In this paper, this idea is implemented by extending the
range of the latent variables by 20%.

Sampling a new point x from the model built by the GTM is quite straightforward.
We can do it in the following way:

Step 1: Uniformly and randomly select a v from [−1.1, 1.1]m−1. Set x1 = y(v, W ).
Step 2: Sample x2 from N(0, 1

β I).
Step 3: Set x = x1 + x2.

where m is the objective number, I is a n × n identity matrix and n is the variable
dimension.

4 Algorithm Framework

Our proposed modeling and sampling approach can be adopted as operators for produc-
ing new solutions in most current MOEAs. In this paper, we use the following algorithm
framework:

Step 0 Initialization: Randomly generate a population P of N solutions, N is the
population size.

Step 1 Reproduction:
Step 1.1 Modeling: Build a probability model based on statistical information ex-

tracted from P ;
Step 1.2 Sampling: Sample N new solutions from the model and store them in Q.
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Step 2 Selection: Select N solutions from P∪Q. Let these selected solutions to replace
all the solutions in P .

Step 3 Stopping Condition: If the stopping condition is met, stop; otherwise, go to
Step 1.

In our implementation, we use the selection scheme of NSGA-II in Step 2. We call our
algorithm the model-based evolutionary algorithm with GTM (MEA/GTM).

5 Experimental Results

We use five test problems shown in Table 1 in our simulation studies.

Table 1. Test problems

MOP n Constraints Objectives

FON2 [1] 30 x ∈ [−2, 2]n
f1(x) = 1− exp(−Pn

i=1(xi − 1√
n
)2)

f2(x) = 1− exp(−Pn
i=1(xi + 1√

n
)2)

OKA4 [20] 2 x ∈ [0, 8]n

f1(x) = 2− 1
4
(x1 − x2 + 4)

+ 1
4

p
−x2

1 − x2
2 − 16 + 2x1x2 + 8x1 + 8x2

f2(x) = 1
4
(x1 − x2 + 4)

+ 1
4

p
−x2

1 − x2
2 − 16 + 2x1x2 + 8x1 + 8x2

x1 − 4
√

x1 − x2 + 4 ≤ 0
x1 + 4

√
x1 − x2 + 4 ≥ 0

ZDT1.2 [13] 30 x ∈ [0, 1]n
f1(x) = x1

f2(x) = g(x)× (1.0−
q

f1(x)
g(x)

)

g(x) = 1.0 + 9
n−1

Σn
i=2(x

2
i − x1)

2

ZDT2.2 [13] 30 x ∈ [0, 1]n
f1(x) =

√
x1

f2(x) = g(x)× (1.0− ( f1(x)
g(x)

)2)

g(x) = 1.0 + 9
n−1

Σn
i=2(x

2
i − x1)

2

DTLZ2.2 10 x ∈ [0, 1]n

f1(x) = cos(π
2
x1) cos(π

2
x2)(1 + g(x))

f2(x) = cos(π
2
x1) sin(π

2
x2)(1 + g(x))

f3(x) = sin(π
2
x1)(1 + g(x))

g(x) =
nP

i=3

(x2
i − x1)

2

ZDT1.2, ZDT2.2 and DTLZ2.22 are a respective modified version of ZDT1 [1]
, ZDT2 [1] and DTLZ2 [21]. In their original versions, the Pareto set is parallel to a
coordinate axis which makes the problems easy to tackle.

We compared the performances of MEA/GTM, NSGA-II3 and SPEA24 on the test
problems in Table 1. The parameter setting of these algorithms are as follows: The

2 ZDT 1.2, ZDT 2.2 and DTLZ2.2 are provided by Hui Li.
3 the source codes are from http://www.iitk.ac.in/kangal/codes.shtml
4 the source codes are from http://www.tik.ee.ethz.ch/pisa
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population size for all the algorithms is set to 100 for 2-objective test instances and 200
for the 3-objective test instances. To have a fair comparison, the other parameters in
NSGA-II and SPEA2 are set as in the default setting in their source codes. In GTM,
the number of training steps is 15, the latent points number is 1 × 25 for 2-objective
test instances and 5 × 5 in case of 3 objective, the basis function number is 2 for 2-
objective problems and 2 × 2 in case of 3-objective and other parameters take their
default values in their source codes. All the algorithms stops after 200 generations. We
run each algorithm for each test instances 20 times.

To measure the performances of the algorithms, we use Υ [17] metric to measure
the convergence of a population to the PF , and ∆ [17] metric to measure the diversity
of a population.

Υ [17] metric is defined as:

Υ (S, S∗) =
1
|S|

∑

x∈S

d(x, S∗), (3)

where
d(x, S∗) = min

y∈S∗
‖F (x)− F (y)‖2.

S is an obtained non-dominated set by an algorithm, S∗ is a set which is uniformly
distributed in Pareto Front.

∆ [17]5 metric is defined as:

∆(S, S∗) =

m∑
i=1

d(ei, S) +
∑
x∈S

|d(x, S)− d̄|
m∑

i=1

d(ei, S) + |S|d̄
, (4)

where {e1, . . . , em} are m extreme solutions in S∗ and

d(x, S) = min
y∈S,y 6=x

||F (x)− F (y)||2,

d̄ =
1
|S|

∑

y∈S

d(y, S).

It should be noticed that d(x, S) measures the distance between point x and its nearest
neighbor which is different from the original definition.

Table 2 gives the means and standard derivations of Υ and ∆ on 20 runs at different
stages, generation 40, 80, 120, 160 and 200, of the algorithms for each problem. Fig.2
shows the distributions of nondominated solutions generated in 20 runs in the objective
space for each algorithm for each problem.

From the values of ∆ in Table 2 it is clear that MEA/GTM outperforms NSGA-II
and SPEA2 in terms of the diversity of the nondominated solutions found. Fig.2 also
supports this claim. For all five test problems, MEA/GTM can cover the whole Pareto
Fronts, while NSGA-II can only cover the Pareto Fronts of OKA4 and DTLZ2.2 and

5 We notice this metric is only fit in the case of small m.
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Fig. 2. Pareto fronts produced by MEA/GTM, NSGA-II and SPEA2
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Table 2. Experimental results

Gen MEA/GTM NSGA-II SPEA2
Υ ∆ Υ ∆ Υ ∆

FON2
40 0.022± 0.002 0.500± 0.071 0.215± 0.027 0.849± 0.049 0.184± 0.025 0.769± 0.118
80 0.002± 0.000 0.160± 0.019 0.075± 0.007 0.748± 0.037 0.061± 0.009 0.726± 0.079

120 0.002± 0.000 0.154± 0.016 0.049± 0.003 0.690± 0.038 0.037± 0.005 0.750± 0.075
160 0.002± 0.000 0.151± 0.017 0.036± 0.003 0.629± 0.051 0.029± 0.003 0.786± 0.069
200 0.002± 0.000 0.156± 0.018 0.029± 0.002 0.514± 0.040 0.023± 0.003 0.798± 0.053

OKA4
40 0.086± 0.008 0.483± 0.069 0.035± 0.005 0.706± 0.110 0.038± 0.012 0.730± 0.263
80 0.065± 0.005 0.485± 0.055 0.020± 0.003 0.821± 0.104 0.025± 0.010 0.757± 0.286

120 0.055± 0.005 0.468± 0.044 0.016± 0.003 0.873± 0.108 0.018± 0.005 0.815± 0.274
160 0.049± 0.004 0.449± 0.048 0.014± 0.003 0.878± 0.125 0.015± 0.006 0.899± 0.322
200 0.045± 0.003 0.399± 0.057 0.012± 0.002 0.841± 0.149 0.017± 0.011 0.811± 0.318

ZDT1.2
40 0.013± 0.002 0.806± 0.053 0.024± 0.005 0.890± 0.043 0.012± 0.003 0.915± 0.025
80 0.008± 0.001 0.425± 0.085 0.011± 0.002 0.814± 0.022 0.005± 0.000 0.928± 0.013

120 0.006± 0.001 0.273± 0.042 0.009± 0.001 0.792± 0.020 0.005± 0.001 0.917± 0.010
160 0.004± 0.000 0.225± 0.023 0.008± 0.001 0.783± 0.028 0.005± 0.000 0.921± 0.013
200 0.004± 0.000 0.206± 0.018 0.007± 0.001 0.775± 0.019 0.005± 0.001 0.915± 0.013

ZDT2.2
40 0.047± 0.021 0.937± 0.112 0.024± 0.010 0.933± 0.017 0.019± 0.007 0.968± 0.038
80 0.013± 0.006 0.765± 0.168 0.009± 0.004 0.947± 0.018 0.004± 0.001 0.965± 0.012

120 0.009± 0.003 0.551± 0.242 0.006± 0.002 0.915± 0.030 0.003± 0.000 0.981± 0.016
160 0.007± 0.002 0.412± 0.213 0.005± 0.003 0.870± 0.020 0.002± 0.000 0.982± 0.014
200 0.006± 0.001 0.329± 0.207 0.005± 0.003 0.870± 0.031 0.002± 0.000 0.984± 0.012

DTLZ2.2
40 0.156± 0.031 0.491± 0.056 0.145± 0.036 0.647± 0.074 0.144± 0.113 0.950± 0.260
80 0.113± 0.024 0.473± 0.075 0.218± 0.292 0.602± 0.077 0.643± 0.393 0.798± 0.215

120 0.099± 0.021 0.448± 0.068 0.462± 0.640 0.576± 0.057 0.603± 0.384 0.832± 0.222
160 0.092± 0.019 0.433± 0.067 0.829± 0.725 0.563± 0.083 0.675± 0.506 0.814± 0.227
200 0.081± 0.012 0.427± 0.066 1.121± 0.499 0.532± 0.035 0.717± 0.441 0.875± 0.240

SPEA2 can not cover any of the Pareto Fronts. The reason may be: (1) MEA/GTM can
cover the whole Pareto Fronts by extension and (2) MEA/GTM uniformly samples new
solutions from the model.

In terms of Υ metric, MEA/GTM performances much better than NSGA-II and
SPEA2 on FON2 and DTLZ2.2. Υ values in MEA/GTM is slightly higher than in
SPEA2 on ZDT1.2 and ZDT2.2, it does not imply that MEA/GTM is worse. Since
NSGA-II and SPEA2, as shown in Fig.2, cannot cover the whole Pareto Front as MEA/GTM
does. Only on OKA4, MEA/GTM performs worse than NSGA-II and SPEA2. From
Fig.2, however, EA/GTM can also approximate the Pareto Front very well.

Table 3. Average run time(in seconds)

Method FON2 OKA4 ZDT1.2 ZDT2.2 DTLZ2.2
NSGA-II 0.323 0.172 0.323 0.327 1.106
SPEA2 1.611 1.662 1.669 1.565 7.207

MEA/GTM 15.206 3.634 10.727 12.354 15.972
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These algorithms have been run in a desktop computer (Pentium(R) 4 3.40GHz
CPU, 1.00GB of RAM). The average run time (in seconds) are listed in Table 3. Al-
though MEA/GTM needs more time to optimize each test problem than NSGA-II and
SPEA2, it is still affordable especially when the fitness evaluation is much time con-
suming.

6 Conclusions

Incorporating problem-specific knowledge into evolutionary algorithms is a basic strat-
egy for enhancing their performances [22]. The Pareto set of a continuous MOP is
usually a piecewise continuous (m− 1)-D manifold. Most current MOEAs ignore this
regularity. Our recent work has showed that such regularity could be beneficial for mod-
eling the population distribution in estimation of distribution algorithms for continuous
multi-objective optimization. This paper demonstrated that GTM can be used for cap-
turing and modeling the regularity and proposed an estimation of distribution algo-
rithms with GTM for multi-objective optimization. The preliminary experiments show
that our proposed method outperforms NSGA-II and SPEA2.

Our previous work in [13], [14] and [15] and this paper are on the design of EDAs
by making the use of the regularity property. In the future, we plan to study how to
incorporate such regularity and other properties of MOPs into other evolutionary algo-
rithms.
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