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Non-Gaussian Velocity Distributions Integrated
over Space, Time and Scales

Volker Willert, Julian Eggert, Jürgen Adamy, Edgar Körner

Abstract— Velocity distributions are an enhanced repre-
sentation of image velocity containing more velocity infor-
mation than velocity vectors. In particular, non-Gaussian
velocity distributions allow for the representation of am-
biguous motion information caused by the aperture prob-
lem or multiple motions at motion boundaries. To resolve
motion ambiguities, discrete non-Gaussian velocity distri-
butions are suggested that are integrated over space, time
and scales using a joint Bayesian prediction and refinement
approach. This leads to a hierarchical velocity distribution
representation from which robust velocity estimates for
both slow and high speeds as well as statistical confidence
measures rating the velocity estimates can be computed.

Index Terms— Velocity Likelihood, Bayesian Tracking,
Multiscale Representation, Optical Flow.

I. INTRODUCTION

TRADITIONALLY, motion estimates of moving ob-
jects in an image sequence are represented using

vector fields consisting of velocity vectors each describ-
ing the motion at a particular image region or pixel
[1],[2]. Yet in most cases single velocity vector estimates
at each image location are an incomplete representation
to characterize motion unambiguously which may intro-
duce great errors in subsequent and sequential motion
estimations. One reason for the incomplete representation
is that the underlying generative model for the motion
measurement process is only an approximation for the
real 2D image movement/formation. A further reason is
that the image data is disturbed by sensor noise.

Besides incomplete models and noisy measurements
there are a series of fundamental problems concerning
motion estimation. These are the aperture problem, the
correspondence problem within image regions with low
contrast (also named the blank wall problem) or periodic
texture and the appearance of multiple motions caused
by occlusions at motion boundaries and transparency of
moving objects.

To deal with these ambiguities a higher-dimensional,
enhanced velocity representation is proposed. For this
purpose, the velocity of an image patch and the image
itself are understood as statistical signals. This implies
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probabilities for the existence of image features, like gray
value and velocity, and leads to a conditional probability
density function (pdf) in feature and velocity space that
can be interpreted as a likelihood function [3],[4]. The
expectation is that pdfs are able to tackle the addressed
problems related to motion processing, like ambiguous
motion, occlusion and transparency. As can be seen
in [5],[6],[7] specific information about the mentioned
problems can, in principle, be extracted from the shape
of the pdfs.

During the last ten years velocity distributions have
been suggested and discussed by several authors mainly
using two approaches: the gradient-based brightness
change constraint equation and the correlation-based
patch matching technique [4],[8],[9],[10].

One established method to reduce ambiguities is
the integration of motion information over space.
That means, interactions between neighboring veloci-
ties or even higher order derivations are considered
[1],[2],[11],[12]. This is often accounted for by smooth-
ness constraints for neighboring velocities assuming that
all pixels within the neighborhood move similarly.

Another challenge in motion estimation is to improve
and stabilize the estimation over time. This can be
done by temporal smoothness constraints and/or temporal
prediction algorithms. For prediction, a model for the
underlying dynamics is needed to predict image motion.

Further improvements are made using multiscale ap-
proaches. This is desirable, e.g., for being able to repre-
sent both high and low velocities at good resolutions with
a reasonable effort. This is usually done in such a way
that the higher velocities at coarser scale are calculated
first, then a shifted/warped version of the image is
calculated using these higher absolute velocities, and
afterwards the lower velocities at the next finer scale
are calculated. These then correspond to relative lower
velocities, since they have been calculated in a frame that
is moving along with the higher velocities from coarser
scale [12],[13],[14], [15],[16].

Some authors work in a probabilistic framework as-
suming that velocity distributions are Gaussian param-
eterized by a mean and covariance. Kalman filtering
can then be used to properly combine the information
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from scale to scale or time to time taking into account
uncertainties of the measurements [17],[18]. Like men-
tioned before, the presumption of Gaussian distributed
velocity measurements is sometimes incomplete because
velocity distributions are often multimodal or ambiguous
[4],[10], especially at motion boundaries. To circumvent
this problem, particle filtering methods for non-Gaussian
velocity distributions have recently been used to improve
motion estimation for tracking single or multiple objects
in a scene [19],[20],[21].

In this work, we propose discrete multimodal pdfs for
velocity estimation to allow for a better velocity repre-
sentation in particular at problematic regions containing
occlusion effects and ambiguous information. The main
focus of the presented model is to stick on the con-
cept of representing velocity information using velocity
distributions (instead of velocity vectors) for all pixels
in the image (instead of single object positions) within
the entire framework. We introduce a joint space-time
integration for non-Gaussian velocity distributions. This
approach is extended to reach a joint space-time-scale
integration algorithm to reduce motion ambiguities and
to estimate image motion also for large displacements
over long-time sequences.

First in Sec. II, we give a short biological interpretation
of our system structure and the main principles.

In Sec. III a linear generative model of image patch
formation over time is introduced. Here we assume that
the changes in two consecutive images depend on the
displacements as well as brightness and contrast varia-
tions of localized image patches. The results are contrast
and brightness invariant velocity distributions, based on a
straight correlation measure comparing windowed image
patches of consecutive images. To account for brightness
and contrast changes has previously also been proposed
in [22], [23] using a gradient-based approach.

In Sec. IV we present an approach for propagation
of velocity distributions on the basis of the generative
model explained in Sec. III. This is done in a Bayesian
manner inspired by grid based methods that are able to
approximate an optimal Bayesian solution [21], [24].

A model for overall image warping is proposed in
Sec. V that includes velocity pdfs. To this end, the local
generative model for independent patch movements is
extended to a global generative model including patch
dependencies which are conditional on the overlap.

Afterwards in Sec. VI, we set up a hierarchical chain
of velocity distributions from coarse to fine spatial scale
and from larger to smaller relative velocities. At each
stage of the pyramid, the distributions for the absolute
velocities are improved using the distributions from the
coarser spatial scale and the previous timestep of the

image sequence. This is done exclusively on the basis
of velocity distributions, and is different from other
frameworks that operate through several hierarchies but
rely on velocity fields when combining information from
several hierarchy levels [13], [14].

Finally in Sec. VII some results and comparisons to
other approaches are presented.

II. BIOLOGICALLY INSPIRED SYSTEM STRUCTURE

The system structure for combining velocity infor-
mation among scales and time is illustrated in Fig. 1.
Only two levels of the complete hierarchy are shown for
the sake of simplicity. The image pyramid consists of
several resolution levels of the input image achieved by
the Gaussian decomposition [25]. Every image resolution
has its corresponding velocity distribution map. Every
column of these maps is a 1D representation of a 2D
velocity pdf ρ(v|x) for the corresponding image location
x with a particular resolution in velocity space v. One
column is build up on several spheres with every sphere
representing a probability value. This leads to a pyramid
of velocity distribution maps for every resolution level.

The principle of refinement from coarser to finer scales
as well as the resolving of motion ambiguities over time,
that are explained in detail in Sec. IV and Sec. VI, can
also be seen from a more biological viewpoint. Every
hierarchy of the distribution pyramid can be interpreted
as a specific brain area consisting of a retinotopically or-
dered bank of receptive fields tuned to various velocities
[24]. The size of the spheres represents the size of the
receptive fields. Every velocity distribution map is built
from velocity tuned cells where every layer of the map
represents a particular velocity v (direction and speed)
for all locations x of the image (retina). This implies a
columnar structure within every hierarchy whereas the
columns at each spatial point x are composed of a
set of cells tuned to a range of velocities v. Velocity
cells at finer scale with smaller receptive fields are pre-
tuned by velocity cells from coarser scale with larger
receptive fields and the cells’ previous activities. If 1.)
the cell activity of the correspondent spatial locations
are consistent and 2.) do agree with the neighboring
activities over time, the prediction is reinforced and the
uncertainty about the refinement is decreased. To the
contrary, inconsistent measurements may increase the
uncertainty. In our distribution pyramid, the possibility of
refinement and resolving at each level is conditioned by
the activities at the previous level and previous timestep.
A higher activity at previous level and timestep implies
more unimodal distributions and therefore better chances
for refinement and resolving.
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Fig. 1. Biologically inspired hierarchical system structure. The model consists of several processing levels at different spatial resolutions
gained from a Gaussian pyramidal decomposition of the input image (left). Every image resolution has its corresponding velocity distribution
map (middle). Every column of these 3D maps is a 1D representation of a 2D velocity pdf ρ(v|x) (shown in the lower right corner) for the
corresponding image location x with a particular resolution in velocity space v. One column is build up on several spheres with every sphere
representing a probability value. This leads to a distribution pyramid of velocity distribution maps for every resolution level.

The presented architecture combines the advantages of
a hierarchical structure, space-time integration and the
representation of velocities using distributions. It allows
for a coarse-to-fine strategy hand in hand with time
propagation of velocity distributions.

III. VELOCITY LIKELIHOOD FORMULATION

First of all, we introduce the notation used to formulate
our model mathematically.

a, A scalar
a vector
A matrix or 2D image
A function of vectors, matrices or images
1 vector of ones
1 matrix of ones
A�B componentwise multiplication of two matrices
A

α© componentwise exponentiation with α of a matrix

In an image sequence, every image I
t at time t consists

of pixels at locations x. Each pixel is associated with
properties like its gray value Gt

x and its velocity vector
v

t
x. G

t denotes the matrix of all gray values of image
I
t. The optical flow is an approximation of the motion

field which is the 2D projection of all physical velocities
in the 3D world on the corresponding pixel locations
x in the image at a time t. It is usually gained by
comparing localized patches of two consecutive images
I
t and I

t+∆t with each other. To do this, we define
W�G

t,x as the patch of gray values taken from an image

I
t, whereas G

t,x := T {x}
G

t are all gray values of image
I
t shifted to x. The shift-operator is defined as follows:
T {∆x}Gt

x
:= Gt

x−∆x
. The W defines a window (e.g. a

2-dimensional Gaussian window) that restricts the size of
the patch. One possibility to calculate an estimate for the
image velocities is to assume that all gray values inside
of a patch around x move with a common velocity v

t
x for

some time ∆t, resulting in a displacement of the patch.
This basically amounts to a search for correspondences of
weighted patches of gray values (displaced with respect
to each other) W�G

t+∆t,x+∆x and W�G
t,x taken

from the two images I
t+∆t and I

t.
To formulate the calculation of the local motion estimate
more precisely, we recur to a linear generative model.
Our approximative approach is that for the motion mea-
surement every image patch W�G

t,x can be considered
independently. The assumption of independent motion
measurements does not take into consideration statistical
correlations which occur for overlapping patches and
similar velocities but is useful to simplify the compu-
tation of the velocity likelihood 1. Every image patch
W�G

t+∆t,x+∆x is causally linked with its preceding
image patch W�G

t,x in the following way: We assume
that an image I

t patch W�G
t,x with an associated

velocity v
t
x

= ∆x/∆t is displaced by ∆x during time
∆t to reappear in image I

t+∆t at location x + ∆x, so

1But we consider spatial correlations in Sec. IV, Eq. (14).



4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS-PART B: CYBERNETICS, VOL. 0, NO. 0, MONTH 0000

that for this particular patch it is

W�G
t+∆t,x+∆x = W�G

t,x . (1)

In addition, we assume that during this process the gray
levels are jittered by noise η, and that brightness and
contrast variations may occur over time. The brightness
and contrast changes are accounted for by a scaling
parameter λ and a bias κ so that we arrive at

W�G
t+∆t,x+∆x = λW�G

t,x + κW + η 1 . (2)

Assuming that the image noise is zero mean Gaussian
with variance σ2

η , the likelihood that G
t,x is a match for

G
t+∆t,x+∆x, given a velocity v

t
x

, the window function
W and the parameters λ, κ and ση , can be written down
as:

ρλ,κ,ση
(Gt+∆t,x+∆x,Gt,x|vt

x
,W) =

= 1

ση

√
2π

e
− 1

2σ2
η
||W�(λ G

t,x
+κ1−G

t+∆t,x+∆x)||2
. (3)

We now proceed to make Eq. (3) less dependent on λ and
κ. For this purpose, we maximize the likelihood Eq. (3)
with respect to the scaling and shift parameters, λ and
κ. This amounts to minimizing the exponent, so that we
want to find

{λ∗, κ∗}:=min
λ,κ

∣

∣

∣

∣W�
(

λG
t,x + κ1−G

t+∆t,x+∆x
) ∣

∣

∣

∣

2
.

(4)
This leads to:

λ∗ =
%Gt,x,Gt+∆t,x+∆x · σGt+∆t,x+∆x

σGt,x

and (5)

κ∗ = µGt+∆t,x+∆x − λ∗ · µGt,x , with (6)

µX = 〈X〉 :=
1
T
X�W

2©
1

1
T W 2©

1

, (7)

σ2
X = 〈X 2©〉 − 〈X〉2 , and (8)

%X,Y =
1

σX · σY

〈

(X − µX1)�(Y − µY1)
〉

, (9)

whereas X and Y have to be replaced by G
t,x and

G
t+∆t,x+∆x, respectively.
Inserting Eq. (5) and (6) into (3), so that λ = λ∗ and

κ = κ∗, leads to the final likelihood formulation:

ρλ∗,κ∗,ση
(Gt+∆t,x+∆x,Gt,x|vt

x
,W) := (10)

ρt(x|v) = 1
ση

√
2π

e
− 1

2
·
(

σ
Gt,x
ση

)2(

1−%2
Gt,x,Gt+∆t,x+v·∆t

)

.

To make the notation shorter, we replace
G

t+∆t,x+∆x,Gt,x by x and drop ση and W. The
likelihood ρt(x|v) describes the probabilities of the

A

B

D
C

PSfrag replacements

I
t

I
t+∆t

ρt(x = A|v) ρt(x = B|v) ρt(x = C|v) ρt(x = D|v)

ση

ση

low

high

Fig. 2. Influence of the noise parameter ση on the likelihood ρt(x|v)
calculated using two consecutive frames It and It+∆t. Upper frame:
Two squares are moving towards each other with different velocities,
whereas the structured square in the upper left is transparent and
overlaps the non-structured square in the lower right. Upper frames:
Velocity likelihoods (the darker values denote higher probabilities) for
a low and high noise parameter ση . The likelihood ρt(x = A|v) at
location A shows an unimodal distribution for the corner of a square.
At location B two motions from both squares are present which is
reflected in a multimodal distribution of ρt(x = B|v). At location
C there is no structure at all which leads to a completely equally
distributed likelihood ρt(x = C|v). The well known aperture problem
that occurs at moving edges, like at location D, is represented in an
ambiguous distribution along the edge ρt(x = D|v).

image data at location x at time t given discrete motion
hypotheses v = ∆x/∆t.

Eq. (10) exhibits some additional properties com-
pared to other proposed velocity likelihood measures
[4],[9],[10]. Our velocity likelihood is derived from a
generative model Eq. (2) that is based on a patch match
and allows for local changes in contrast and brightness.
This is not accounted for by comparable likelihood
formulations that are based on the gradient constraint
equation [4],[7]. The noise is assumed to be in the
imaging domain with zero mean Gaussian noise added
to the image gray values. Other approaches derive noise
models in the derivative domain [4],[26].

Our likelihood measure results in a straight correlation
method [27] with the weighted empirical correlation
coefficient Eq. (9) that ensures that local changes in
illumination have minimal influence on the accuracy of
the likelihood. Another property of Eq. (10) is given
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by the ratio of the variance of the patch at location
x to the variance of the Gaussian distributed noise
σ2
Gt,x/σ2

η. If ση is chosen low, then only high values
of %2

Gt,x,Gt+∆t,x+∆x contribute to the distribution and
less contrastive patches tend to have a higher impact
on the resulting likelihood distribution. For higher noise
level ση, more contrastive patches are needed to get a
significantly peaked distribution. The influence of the
noise parameter ση on the likelihood ρt(x|v) and some
typical ambiguous motion situations are shown in Fig. 2.

IV. INTEGRATION OVER SPACE-TIME

With the aim to develop a joint integration of velocity
distributions over space-time and scales we first introduce
the propagation over space and time algorithm which is
then combined with the integration over scales strategy
in section VI.

To get velocity pdfs out of the observed likelihood
measures ρt(x|v) Bayesian Inference is used to find the
probabilities of hypotheses ρt(v|x) given observations.
Here, x denotes the observation that the patch W�G

t,x

matches the patch W �G
t+∆t,x+∆x which has been

explained in Sec. III. This is a common way to estimate
the posterior pdfs ρt(v|x) that hold the probabilities of
the motion hypotheses v given the image data [10], [19].
Applying Bayes’ rule a prior ρ(v) is combined with the
likelihood to calculate the posterior

ρt(v|x) ∼ ρt(x|v)ρ(v) . (11)

The prior ρ(v) is a common velocity distribution for
all positions x that assumes probabilities for motion
hypotheses v in the absence of any data and likelihoods.
It may be used to indicate preference of velocities,
e.g. peaked around zero like proposed in [6]. The symbol
∼ indicates that a proportionality factor normalizing the
sum over all distribution elements to

∑

v
ρt(v|x) = 1

has to be considered.
If a whole sequence is examined so that previous es-

timates are available, these estimates of earlier timesteps
can be taken into account to update the prior over time,
so that instead of Eq. (11) we get the modified Bayes’
rule

ρt(v|x) ∼ ρt(x|v)ρ̂t
x(v) . (12)

Now the prior ρ̂t
x(v) is a location x and time t dependent

prediction of the velocity pdf at time t using estimates
of previous velocity pdfs ρt−∆t(v|x). This leads to a
recursive algorithm essentially consisting of the two
stages: 1) prediction and 2) update of the velocity pdfs
ρt(v|x). The update operation uses the latest likelihood
ρt(x|v) to calculate the current velocity pdf according
to Eq. (12). The prediction operation translates and

deforms the previous velocity pdf ρt−∆t(v|x) to
get the new prior ρ̂t

x(v) for the update operation at
measurement time t. This propagation of the velocity
pdfs can be calculated in two ways depending on the
chosen marginalization approximation:

• Our likelihood distribution ρt(x|v) is calculated
with Eq. (10) assuming independently moving image
patches so that we neglect correlations based on patch
overlaps, with the consequence that the likelihoods at the
different locations x can be seen as being independent
from each other. We therefore assume the following
prediction equation for independent patches:

ρ̂t
x
(v) ∼ ρt−∆t(v|x − v · ∆t) . (13)

This prediction Eq. (13) is very simple because
the probability values of all velocity distributions
ρt−∆t(v|x) of the previous image have to be rearranged
assuming only two considerations. First, every pixel
moves to a certain degree in every observed direction
v. Second, the velocities of all pixels keep constant
during time 2∆t of three consecutive frames. Therefore,
linear prediction is applied to all probability values
assuming constant velocity v

t
x = v

t−∆t
x−∆x

. This results
in a parallel shift ∆x = v∆t in image space x of all
probability values ρt−∆t(v|x − ∆x) that belong to the
same velocity v. Afterwards, the shifted values have to
be normalized in velocity space to ensure that the sum
over all probability values of the predictive prior ρ̂t

x(v)
belonging to one location x is one

∑

v
ρ̂t
x
(v) = 1. In

Fig. 1, this leads to simple shift operations of the layers
of the velocity distribution map followed by columnwise
normalization of the shifted probability values.

• If we want to consider spatial coherence, which
is known to be important in motion perception [24] and
has already been done on the basis of velocity vectors
[17], we couple the estimates of velocity pdfs over
space in order to get a prior ρ̂t

x
(v) that is dependent

on previous estimates of several image locations in a
neighborhood x

′ around x. The single contributions can
be weighted according to the overlap of the patches and
the size of the patch window using a weighting window
Ŵ (we have usually chosen Ŵ close to W). This leads
to a combined space-time integration that is formulated
in the prediction equation for correlated patches:

ρ̂t
x(v) ∼

∑

x′

Ŵ x

x′ρt−∆t(v|x′ − v · ∆t) . (14)

This extended prediction scheme that is able to take
into consideration neighborhood relations in image space
requires an additional correlation of every layer of the
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Fig. 3. Example of space-time integration resolving motion ambigu-
ities like the aperture problem at location B and D and the lack of
contrast within image regions at location C.

velocity distribution map with the window Ŵ. The
only assumption is that neighboring locations x

′ which
are nearer to x have distributions ρt−∆t(v|x′) which
more closely resemble the distribution ρt−∆t(v|x) at the
observed location x. This implies, it is more likely that
these pixels belong to one coherently moving object. In
the implementation, we have chosen a Gaussian window
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− 1

σ2
Ŵ

||x−x
′||2

.

The prediction Eq. (14) can be seen in analogy to the
prediction processes to obtain the prior pdf at the next
timestep using the well-known Chapman-Kolmogorov
equation (see e.g. [21]), which is the basis for many
non-Gaussian Bayesian tracking methods like particle
filtering [28], [7] or the Condensation algorithm [20].
One difference to existing work on the topic of motion
estimation is that our prediction includes spatial coher-
ence effects which means correlations between neigh-
boring pixels in velocity space that prefer coherently
moving pixels within a neighborhood defined by Ŵ.
In our approach, the prediction of one state does not
only depend on the distribution of the previous state and
the propagation of its previous distribution. Instead, the
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Fig. 4. Example of space-time integration reducing motion ambiguities
caused by image noise. Zero mean Gaussian noise with ση = 20 is
added to the gray values G ∈ [0; 255] of the image I

t at each timestep
t.

propagation of every velocity distribution is dependent
on the distributions of all the neighboring pixel x

′ that
are able to move to the observed location x. Therefore
a clear prediction can only be made if the neighboring
distributions ρt−∆t(v|x′) at time t − ∆t, shifted like
explained in Eq. (13), are consistent with the momentary
observed distribution ρt(v|x) at time t, meaning that all
pixels in the neighborhood move homogeneously. The
more diverse the distributions are the less certain the
prediction is.

In Fig. 3 an example is given how the space-time
propagation based on velocity distributions resolves mo-
tion ambiguities caused by the aperture problem and the
lack of contrast within image regions. As expected, the
ambiguities at the edges of the moving square which are
reflected in the equally distributed velocity distribution
along the moving boundaries are resolved timestep by
timestep leading to unimodally distributed clearly peaked
velocity distributions. In Fig. 4 another example of a
test scene disturbed by noise, e.g. zero mean Gaussian
noise added to the image gray values G ∈ [0; 255]
with variance ση = 20, is shown. Again the ambiguities
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at the beginning of the sequence are resolved after a
few timesteps ∆t and the space-time propagation works
properly in the case of noisy sequences.

V. IMAGE WARPING MODEL

Before introducing integration over scale, the needed
warping model is proposed and explained. Normally,
warping is done by shifting every image gray value
Gt

x located at x to the estimated new position x + ∆x

described by the corresponding velocity vector v
t
x

of the
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gray values at different positions in image I

t are shifted
to the very same position in image I

t+∆t. Therefore
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value Gt
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to gray value Gt+∆t

x
correspondence over time

is not clearly defined over the whole image because of
ambiguities in velocity estimation and the appearance or
disappearance of gray values at occlusion boundaries.
Usually warping is followed by an interpolation step to
reduce the errors and fill the ”gaps” caused by the just
mentioned problems [[18]]. We start with the underlying
generative model of locally independent moving image
patches for the measurement of local velocity likelihoods
ρt(x|v) as formulated in Eq. (2). Now the question is
how to formulate a generative model for the whole image
warping process reducing the errors made by motion
ambiguities without explicit interpolation. To this end,
we combine the idea of locally moving and overlapping
weighted image I

t patches W�G
t,x and the measured

local velocity likelihoods ρt(x|v). Again, as before in
the propagation over time approach, the likelihoods are
thought to be locally dependent according to the overlap
of the patches. This implies that G

t+∆t is generated
by the overlap of all image patches W�G

t,x moving
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Fig. 6. Two examples of image warping. The first I example is a noisy
square moving with four pixel/frame in front of a white background.
The results are displayed in the first row of Fig. 6. In a) the original
frame, in b) the result of the warped previous frame (that should in the
perfect case be identical to a)) and in c) the error between original and
warped frame is shown. The second II example shows a white square
(d)) moving in front of a noisy background with the same velocity as
in I with the warping result e) and the error f). In e) we have marked
the outline of the square for clarity.

with all possible velocities and weighted by the posterior
velocity distribution ρt(v|x) that is calculated by the
likelihoods using Bayes’ rule (Eq. (11)). This leads to
the following warping process:

G̃
t :=

∑

v,x

ρt(v|x)Wx−v∆t�G
t , (15)

with G̃
t being the prediction of G

t+∆t using all the
information (’old’ image G

t and velocity estimation
ρt(v|x)) available at time t. Figure 5 illustrates the
contribution of a pixel of a moving patch anchored at
location x

′ at time t to the gray value at location x in im-
age I

t+∆t. In Fig. 6 two examples of the warping process
are shown. The first example is a noisy square moving
with four pixel/frame in front of a white background.
The results are displayed in the first row I of Fig. 6.
In a) the original frame, in b) the result of the warped
previous frame and in c) the error between original and
warped frame is shown. In this example the background
is clutter-free and therefore no errors caused by appearing
and disappearing gray values can occur. The errors result
from the ambiguity of the velocity distributions and are
dependent on the spread of the distributions. The extreme
case of single peak distributions would cause no errors
at all resulting in a perfect prediction by the warping
process. The more the distributions are spread the more
blurred are the warped images. The second row II shows
a second example of a white square moving in front of
a noisy background with the same velocity as in I. Now
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gray values appear and disappear over time. Therefore
correlation results of corresponding patches are less
unambiguous at occlusion boundaries and the spread and
ambiguity of these velocity distributions increases. That
leads to blurred object edges (e)) and has an effect similar
to the interpolation and consequent smoothing/low-pass
filtering used in standard warping methods.

VI. INTEGRATION OVER SCALES

Now we regard a coarse-to-fine hierarchy of velocity
detectors [29]. A single level of the hierarchy is deter-
mined by 1) the resolution of the images that are pro-
cessed 2) the range of velocities that are scanned and 3)
the window W of the patches that are compared. Coarser
spatial resolutions correlate with higher velocities and
larger patch windows. The strategy proceeds from coarse
to fine, i.e., first the larger velocities are calculated, then
smaller relative velocities, then even smaller ones, etc.

In the resolution pyramid, at each level k we have
different velocity distributions ρt

k(v|x) for the same
absolute velocity v at its corresponding image location x.
The calculation of the pdfs includes space-time propaga-
tion on each level in the manner as introduced in section
IV. Velocity pdfs at higher levels of the pyramid (i.e., us-
ing lower spatial resolutions) are calculated using larger
windows W, therefore showing a tendency towards less
aperture depending problems but more estimation and
integration errors. To the contrary, velocity pdfs at lower
levels of the pyramid (higher resolutions) tend to be more
accurate but also more prone to aperture problems.

Nevertheless, the velocity pdfs at the different levels
of the pyramid are not independent of each other. The
purpose of the pyramid is therefore to couple the different
levels of velocity pdfs in order to 1) gain a coarse-to-fine
description of velocity estimations 2) take advantage of
more global pdfs to reduce motion ambiguities and 3)
use the more local pdfs to gain a highly resolved velocity
signal. The goal is to be able to simultaneously estimate
high velocities yet retain fine velocity discrimination
abilities.

In order to achieve this, we do the following: The
highest level of the pyramid estimates large-scale/large-
region velocity pdfs of the image. These velocity pdfs are
used to impose a moving reference frame for the next
lower pyramid level to estimate better resolved, more
local velocity pdfs. That is, we decompose the velocity
distributions in a coarse-to-fine manner, estimating at
each level the relative velocity distributions needed for
an accurate total velocity distribution estimation.

There are several advantages of such a procedure. If
we want to get good estimates for both large and highly

resolved velocities/distributions without a pyramidal
structure, we would have to perform calculations
for each possible velocity, which is computationally
prohibitive. In a pyramidal structure, we get increasingly
refined estimations for the velocities starting from
inexpensive, but coarse initial approximations and
refining further at every level.

At each level of the pyramid, we do the following
calculations:

• Start with the gray value inputs

G̃
t
k, G

t+∆t
k . (16)

G̃
t
k is the level k prediction of all gray values of image

I
t+∆t
k , using the information available at t, calculated

with our warping model introduced in section V. With
k = 0 denoting the highest level we have G̃

t
0 = G

t
0 (i.e.

the first estimation is directly given by the measurement),
since there are no further assumptions about velocities v.

• Calculate the local likelihood for the k-th level
velocity ṽ

ρ̃t
k(x|ṽ) ∼ e

− 1
2 ·

(
σ
G̃

t,x
k

ση

)2(

1−%2

G̃
t,x
k

,G
t+∆t,x+ṽ∆t
k

)

(17)

as formulated in Eq. (10). Note that at the highest level,
ṽ is equal to the absolute velocity v from ρt

k(x|v),
whereas at lower levels, ṽ is a differential/relative
velocity related with the likelihood ρ̃t

k(x|ṽ). Note
also that ρ̃t

k(x|ṽ) correlates G̃
t,x
k (and not G

t,x
k ) with

G
t+∆t,x+ṽ∆t
k .

• Calculate the local likelihood ρt
k(x|v) for the absolute

velocity v by combining the posterior estimation
ρt

k−1(v|x) for the absolute velocity v from the higher
stage k − 1 with the likelihood estimations for the
relative velocity ṽ from stage k as follows:

ρt
k(x|v) :∼

∑

v̌

∑

ṽ=v−v̌
ρ̃t

k(x + (v − ṽ)∆t|ṽ) ρ̌t
k(v̌|x) ,

with ρ̌t
k = I(ρt

k−1(v|x)) . (18)

Function I interpolates the estimate ρt
k−1(v|x) from

coarser scale to resolution of scale k. At the highest
level there will be no combination because no velocity
distributions from a coarser level are available and
therefore ρt

0(x|v) = ρ̃t
0(x|v) because there we are

directly considering the absolute velocity.

• Combine the likelihood ρt
k(x|v) with the prior

ρ̂t
x,k(v) gained from space-time propagation (Eq. (14))
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Fig. 7. Block diagram of the estimation process over space-time and scales. The momentary estimation ρt
k
(v|x) combines the prediction from

coarser scale ρ̌t
k
(v̌|x) with the prediction from previous time ρ̂t

x,k
(v) and the local measurement ρ̃t

k
(x|ṽ). The scale integration of the velocity

distribution is calculated at every time t and space-time propagation is done for every hierarchy in parallel within the time interval [t, t + ∆t].

at level k using the posterior distributions ρt−∆t
k (v|x)

at time t − ∆t to get the posterior distribution ρt
k(v|x)

for the absolute velocity v according to

ρt
k(v|x) ∼ ρt

k(x|v) ρ̂t
x,k(v) . (19)

• Use the gained posterior distribution for the warping
of the image G

t
k+1 to time t+∆t at the next level k+1

resulting in a predictive image G̃
t
k+1 according to

G̃
t
k+1 :=

∑

v,x

ρt
k(v|x)Wx−v∆t�G

t
k+1 . (20)

This is the best estimate according to level k, time t
and the constraints given by the warping model.

• Increase the pyramid level k and repeat the procedure.

The block diagram of the iteration process is shown in
Fig. 7. Examples of the reduction of motion ambiguities
through scales are shown in Fig. 8. With increasing scale
level k the velocity distributions ρt

k(v|x) at location
x = A and x = B are refined. Especially multiple
peaked distributions change to more or less unimodal
distributions.

VII. RESULTS

In general, for the presented method it is not necessary
to optimize the parameters and interpolation methods
according to the object sizes in the scene and the under-
lying real movement patterns. Only the noise parameter
ση, the size of the patches W, the integration window
Ŵ and the search area for the matching algorithm have
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Fig. 8. Example of scale integration reducing motion ambiguities
caused by multiple motions and representing high velocities at high
resolution in velocity space.

to be chosen. No informations about object sizes and
movement characteristics are incorporated. Moreover, the
target is to find a tradeoff between accuracy of the
estimated flow field and computational cost.

To achieve this, the maximum velocity that the sys-
tem should detect has to be defined. According to this
velocity the number of discrete probability values per
distribution has to be chosen. The patch size determined
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A Yosemite flow B Yosemite probabilities C Translating Tree flow

Fig. 9. Examples of (A) the flow field of the Yosemite sequence with its (B) corresponding probability values (the whiter the pixels are the
more probable the velocity is) and (C) the flow field of the Translating Tree sequence often used as benchmark for optical flow computation.
With our space-time-scale integration framework applied over 9 consecutive frames we achieve a mean angular error of 8.51◦ on the cloudy
Yosemite sequence and a mean angular error of 0.34◦ on the Translating Tree sequence.

by the size of window W is normally set in the range
of 3 × 3 up to 9 × 9 pixels. The weighting of the
patches W as well as of the neighborhood Ŵ was done
using a symmetrical Gaussian window with variances
σW,σ

Ŵ
half the size of the window. The noise parameter

ση = ασ̄Gt,x can be tuned, e.g. using the mean variance
σ̄Gt,x of all local variances of the momentary input
image σGt,x scaled with a factor α (we have chosen
the same α = 0.5 for all calculations). For the space-
time-scale algorithm the image decomposition is done
with a standard Gaussian pyramid [25]. The initial priors
ρ̂0

k(v|x) are chosen Gaussian distributed with variance
0.25 times the maximum velocity, which means prefer-
ring zero velocities at the beginning. For all examples
where the flow field was calculated the MMSE estimator
[30] is used for flow field estimation.

vMMSE =
∑

v

ρt
k(v|x) (21)

Evaluations to judge the accuracy, the robustness against
noise and parameter variations as well as the computation
time have been done on the Yosemite sequence [31] with
and without cloudy sky created by Lynn Quam and the
Translating Tree sequence [31] created by David Fleet
(see Fig. 9). Although our paper does not focus on high
accuracy, our technique compares quite favorably to the
techniques reported in [31]. In Table I the best techniques
listed in [31] are shown including our results. The used
error statistics that combine angular and magnitude error
denoted as AAE = average angular error and STD
= standard deviation are also proposed in [31]. The
most convincing result for our technique is the AAE of
0.34◦ for the Translating Tree sequence. But also for
the Yosemite sequence our results are better than all the
results reported in [31] even with additive Gaussian noise
with standard deviation of σG = 40 as listed in Table II.

Best results on the cloudy Yosemite sequence reported in [31]
Technique AAE STD Density

Anandan 15.84◦ 13.46◦ 100%
Singh 13.16◦ 12.07◦ 100%
Nagel 11.71◦ 10.59◦ 100%
Horn and Schunk mod. 11.26◦ 16.41◦ 100%
Uras et al. 10.44◦ 15.00◦ 100%
Fleet and Jepson 4.29◦ 11.24◦ 34.1%
Lukas and Kanade 3.05◦ 7.31◦ 8.7%

Our results on the cloudy Yosemite sequence (see also Fig. 9)

Int. over space-time 8.73◦ 10.45◦ 100%
Int. over space-time-scale 8.51◦ 10.62◦ 100%

2.88◦ 5.02◦ 34%

Our results on the cloudless Yosemite sequence

Int. over space-time 6.29◦ 6.56◦ 100%

Best results on the Translating Tree sequence reported in [31]

Nagel 2.44◦ 3.06◦ 100%
Singh 1.25◦ 3.29◦ 100%
Uras et al. 0.62◦ 0.52◦ 100%

Our results on the Translating Tree sequence (see also Fig. 9)

Int. over space-time-scale 0.34◦ 0.12◦ 100%

TABLE I

BENCHMARK REPORTED IN [31] INCLUDING OUR RESULTS FOR

COMPARISON (AAE = AVERAGE ANGULAR ERROR, STD =

STANDARD DEVIATION).

The probability values (see B in Fig. 9) serve as a
good confidence measure to exclude wrong estimates
and reduce the density of the flow field but increase the
correctness. The robustness against parameter variations
on the patch window size W and the integration window
size Ŵ are shown in Table III. In Table IV some
measurements on the computation time have been done
for different image sizes and velocity search spaces.

The computations have been performed on a 1.8 GHz
Intel Pentium 4 processor executing C code. Since we
are using a correlation-based method the number of
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Fig. 10. Example of (A) the flow field of the Darmstadt Traffic sequence, (B) the corresponding probability values and (C) the magnitude of
the extracted velocity vectors.

operations for a single scale-level is in the order of
imagesize × patchsize × number of velocities. But
nearly all formulations can be implemented very effi-
ciently using accelerated correlation algorithms because
our algorithm offers the possibility for a highly parallel
computation. In particular, we used the Fast Fourier
Transform for all the correlational computations.

In Fig. 10 we give an example of a real-world se-
quence including camera noise and changing lightning
conditions that is more difficult to treat than the used
benchmark sequences. The first image (A) shows the
optical flow, in (B) the corresponding probability values
are plotted and in (C) the magnitude of the extracted
velocity vectors are shown. We want to mention that

σG 0 10 20 30 40
AAE 8.50◦ 9.33◦ 9.62◦ 10.01◦ 10.38◦

STD 10.60◦ 11.09◦ 11.54◦ 12.02◦ 12.53◦

TABLE II

RESULTS FOR THE ACCURACY DECREASE WHEN GAUSSIAN NOISE

WITH INCREASING STANDARD DEVIATION σG IS ADDED TO THE

CLOUDY YOSEMITE SEQUENCE.

W 5 × 5 5 × 5 5 × 5 3 × 3 7 × 7 9 × 9

Ŵ 5 × 5 15 × 15 35 × 35 35 × 35 35 × 35 35 × 35

AAE 7.58◦ 7.06◦ 6.40◦ 6.76◦ 6.29◦ 6.45◦

STD 8.35◦ 7.36◦ 6.42◦ 6.40◦ 6.56◦ 6.84◦

TABLE III

RESULTS FOR PARAMETER VARIATIONS ON THE PATCH WINDOW W

AND THE SPATIAL CORRELATION WINDOW Ŵ ON THE CLOUDLESS

YOSEMITE SEQUENCE.

there are some gradient based techniques reported in
[16] focusing on high accuracy optical flow computation
using a continuous, rotationally invariant energy func-
tional with a non-linearized data term. With this energy
functional that is minimized iteratively and depends on

several parameters even better results can be achieved.
Our estimates are based on a simple linear generative
model and do not have to be calculated iteratively within
a timestep but they improve from frame to frame with
integration over space, time and scale.

image size [pixel × pixel] 128 × 128 128 × 128
sampled v [pixel/framerate] 25 pix/fr 81 pix/fr
comp. time [seconds/frame] 0.09 sec/f 0.28 sec/f

256 × 256 256 × 256 256 × 256 252 × 316 Yosemite

9 pix/fr 25 pix/fr 81 pix/fr 81 pix/fr
0.24 sec/f 0.61 sec/f 1.48 sec/f 1.67 sec/f

TABLE IV

COMPUTATION TIME FOR DIFFERENT DATA SIZES.

VIII. CONCLUSION

In this paper we have presented a motion estimation
framework based on a distributed representation of ve-
locity information. We have extended known concepts
of optical flow estimation dealing with velocity vectors
towards non-Gaussian velocity distributions, introducing
brightness and contrast invariance as well as propagation
of motion information over space, time and scales. Our
joint integration model is able to resolve motion ambi-
guities and remains robust in the case of image noise
and brightness variation. It proposes a solution to the
aperture and the blank wall problem and is applicable
to real-world sequences. The implemented algorithm is
surprisingly fast without using specific hardware and
the system architecture can be interpreted in a more
biological fashion. It can be used as a basic mid-level
motion processing module to build upon higher-level
systems, like motion segmentation and multiple object
tracking.

In general our approach is constructed to resolve
ambiguities in coherently moving regions. Additional a
priori knowledge about object boundaries respectively
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segmentation information, gained from static features
like e.g. edges, could be explicitly considered in the
spatial integration of motion information and should
improve the results and sharpen the overall pdfs.
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