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A Probabilistic Model for Binaural
Sound Localization

Volker Willert, Julian Eggert, Jürgen Adamy, Raphael Stahl, and Edgar Körner

Abstract—This paper proposes a biologically inspired and tech-
nically implemented sound localization system to robustly estimate
the position of a sound source in the frontal azimuthal half-plane.
For localization, binaural cues are extracted using cochleagrams
generated by a cochlear model that serve as input to the system.
The basic idea of the model is to separately measure interaural
time differences and interaural level differences for a number of
frequencies and process these measurements as a whole. This leads
to two-dimensional frequency versus time-delay representations
of binaural cues, so-called activity maps. A probabilistic evalua-
tion is presented to estimate the position of a sound source over
time based on these activity maps. Learned reference maps for
different azimuthal positions are integrated into the computation
to gain time-dependent discrete conditional probabilities. At every
timestep these probabilities are combined over frequencies and
binaural cues to estimate the sound source position. In addition,
they are propagated over time to improve position estimation. This
leads to a system that is able to localize audible signals, for example
human speech signals, even in reverberating environments.

Index Terms—Binaural hearing, probabilistic estimation, sound
source localization.

I. INTRODUCTION

THE PERCEPTION of our environment and interpersonal
communication strongly depends on hearing. One of the

primary abilities of the human auditory system is to localize
sound sources in the environment. Sound localization serves as
an important cognition feature, e.g., for attention control and
self-orientation. Therefore, the development of a computational
model of the human auditory localization process that is able to
robustly localize real sound sources in natural environments is
useful to improve the performance in many fields of application,
for example, the interaction between humans and robots or
binaural hearing aids for persons with hearing deficits.

There are three main requirements concerning sound local-
ization: It would be desirable to: 1) accurately localize any kind
of speech or sound source; 2) separate sound sources according
to different positions; and 3) track moving sound sources. To
deal with these problems the central auditory system of all
mammals uses a common computational strategy [1], [2]. First,
a variety of spatial localization cues is measured. Those cues
that are from a single sound source are then grouped together
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Fig. 1. Principles of the appearance of interaural time and interaural level
differences (ITD and ILD). On the left the principle of time-delay between the
two ears dependent on the sound source position angle is shown. On the right
the principle of frequency- and position-dependent damping of the sound signal
is illustrated, the so-called head-shadow effect.

and associated with the appropriate position in space. There are
two kinds of spatial localization cues: monaural and binaural
cues. Monaural cues are based on filter characteristics of the
pinna of a single ear and are not addressed in this article.
But there are two binaural (interaural) cues that are based on
differences in timing and level of the sound at each of the
two ears called interaural time differences (ITDs) and interaural
level differences (ILDs).

Relating to Fig. 1, ITDs arise in the human auditory system
because the two ears are spatially positioned with a distance
d to each other given by the head dimensions. This leads to a
difference in transmission time ∆t of a signal arriving at the
two ears. As a first approximation, this can be thought of as
a difference in distance ∆s ∝ ∆t in the straight line from the
sound source to the ears [3]. But this approximation is slightly
inaccurate due to arising reflection and diffraction effects by
the head, the shoulders, and the external ears, which lead to
phase differences dependent on the frequency f [4]. Therefore,
the measurement of ITDs is influenced by phase differences as
well. Especially for wavelengths smaller than the head diameter
(f > 1500 Hz) the distance ∆s may be greater than one wave-
length. This leads to an ambiguous situation where ∆s does not
correspond to a unique sound source position angle α [5]. For
humans, there is no phase locking above 1500 Hz, and they are
not sensitive to interaural phase shifts above that frequency [4],
[6]. Furthermore, the time-delay ∆t is not linearly mapped on
α. The more the sound source moves to the side the slower ∆t
increases. This nonlinear dependence is approximately given
by ∆t = d sin(α)/v following Fig. 1 with v being the acoustic
velocity.

1083-4419/$20.00 © 2006 IEEE
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Fig. 2. System structure for binaural sound source localization used in this paper. The system mainly consists of four stages. (a) Measurement of discrete time t
versus frequency f spectra for the left and right microphone of the robot head, explained in Section III. (b) Correlation-based extraction of binaural cues like ITD
and ILD, represented with frequency f versus time-delay ∆t matrices, so-called ITD/ILD activity maps, explained in Section IV. (c) Transformation of the activity
maps to ITD/ILD likelihood maps that are frequency f versus position angle α matrices using learned ITD/ILD reference maps, explained in Section V. There is
also the possibility to put in additional knowledge using ITD/ILD knowledge maps. (d) Combination of all the probability maps to one posterior distribution that
is propagated over time t to estimate the most probable sound source position angle αt extracted from the posterior distribution, explained in Section VI.

By comparison, the ILD is strongly related to the loss of high
frequencies caused by diffraction and refraction effects due
to the geometry of the head and shoulders. Damping because
of energy dissipation dependent on the material between the
signal receptors also influences the ILD. In general, changing
the azimuthal sound source position α towards the ipsilateral
side (the side closest to the sound source) increases ILD by a de-
crease in the sound pressure on the contralateral hemifield (the
side farthest to the sound source). This is not true anymore for
source positions near ±90◦ due to the bright spot [7]. The wave
recombines at the point opposite the incident angle, generating
a local increase in intensity. Additionally, the level ratio of the
acoustic pressures between ipsi- and contralateral ear increases
with raising frequency f . The dependence between the level
ratio and the frequency is highly nonlinear and different for
every human or robot head. It can generally be observed that
the higher the frequency the larger the level ratio between ipsi-
and contra lateral ear [8]. This observation is called the head-
shadow effect and is visualized in Fig. 1. The classic Duplex
Theory proposes that high-frequency tones are localized by
ILDs and low-frequency tones by ITDs so that the interaural
cues are used exclusively each in the frequency range that
produces unambiguous ITDs or ILDs [9].

The main focus of this paper is on modeling a biologi-
cally inspired system shown in Fig. 2 to estimate azimuthal
sound source position in which the location estimate will be
updated at every time step using previous information as well
as the current measurement. The estimation of the sound source

position is performed in a probabilistic way based on calculated
cochleotopically1 organized maps, so-called activity maps C,
which represent binaural cues, and learned representatives, so-
called reference maps I, which include learned binaural infor-
mation for specific sound source positions. The system of Fig. 2
works as follows.

1) The input to the system are the so-called cochleagrams
R, L from the sound waves arriving at the left and
right microphone achieved by a cochlea-simulating fil-
terbank with a chosen number of frequency channels
fc. A cochleagram is a frequency versus time, i.e., f
versus t, matrix and consists of amplitude values for every
discrete timestep t1:n for every characteristic frequency
fc = f1:m, with n being the maximal number of recorded
timesteps and m being the number of frequency channels.

2) The cochleagrams are correlated in two different manners
to get the activity maps Ct

ITD and Ct
ILD that comprise

binaural information. The correlation-based extraction of
binaural cues using ITD and ILD, is represented with
two frequency versus time-delay, i.e., f versus ∆t, ma-
trices of the same format, which is particularly useful
to handle ambiguities within the single ITD and ILD
measurements and to provide a link between ILD and
ITD. The activity maps Ct

ITD and Ct
ILD are compared

with corresponding reference maps IITD and IILD that

1Cochleotopy: Spatial arrangement of the frequency-dependent sensitivity of
the basilar membrane along the cochlea.
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are learned for a number of position angles α and bin-
aural cues c (ITD or ILD) to produce cue-dependent
cochleotopically organized azimuthal maps, which we
call likelihood maps. The integration of learned reference
maps into the model enables the system to adapt to any
kind of robot head without requiring an explicit model of
the relation between the interaural cues and the azimuthal
position angle.

3) The comparison of the maps with their references leads to
two separate likelihood maps Pt

ITD and Pt
ILD, one for the

ITD and one for the ILD cue that contain discrete proba-
bility values for all correlation measures zt for every cue
c, every observed position angle α and every frequency
channel fc of the filterbank. The values of these likeli-
hood maps are seen as a whole and interpreted as one sin-
gle conditional probability, the likelihood P (zt|α, f, c).
This likelihood comprises the conditional probabilities
P (zt|α, f, c) that the correlation measurement zt has
happened at timestep t given the position angle α of
the sound source, the frequency f , and the cue c. At
every timestep the likelihood is combined with knowl-
edge about the influence of the frequency f dependent
on the cue c and position angle α and the influence of
the cue dependent on the position angle. These influences
are realized with frequency and cue dependent weightings
memorized in the so called knowledge maps KITD and
KILD.

4) Using standard marginalization applied to P (zt|α, f, c),
a single-likelihood distribution P (zt|α) only conditioned
by the angle α is calculated as a result. The likelihood
is propagated over time using a Bayesian approach to
get the posterior P (α|zt) from which the position angle
estimate αt is extracted for every timestep t using stan-
dard estimation methods, e.g., the maximum aposteriori
estimator [10]. The system is then able to estimate the
position angle of the sound source and improve the esti-
mation result over time.

In Section II, a short overview of the biological auditory
pathway of sound source localization, which is the archetype
of the system proposed here, is given. The Sections III–VI
describe the different stages a)–d) of the presented localization
system. Finally, Section VII shows some performance results.

II. BIOLOGICAL ARCHETYPE

The auditory signal processing can be divided into two
consecutive parts: the transformation of the sound wave to spike
trains and the representation and extraction of sound and speech
information in the different auditory brain areas. Referring to
Fig. 3, incoming sound waves at the pinna are first filtered in
the outer ear that has filter characteristics with a bandpasslike
transfer function. Then, the filtered sound waves activate oscil-
lations on the eardrum that are transmitted via the middle ear to
the cochlea in the inner ear. The transformation to spike trains
representing neuronal activity is done by the haircells that are
distributed on the basilar membrane, the primary organ of hear-
ing. The basilar membrane acts like a filterbank by converting
acoustic vibrations to a frequency dependent neuronal activity

Fig. 3. Ear with the cochlea doing the transformation of the sound wave to
neuronal activity.

Fig. 4. Biological archetype for binaural localization. The different brain
areas that contribute to the localization process with the required connections
in the auditory pathway are shown.

pattern on the cochlea. High-frequency oscillations activate
haircells only at the entrance of the cochlea and the lower the
frequency of the oscillations is, the more they expand into the
cochlea onto the basilar membrane [3]. The first stage a) of
our model in Fig. 2 models several mentioned properties of the
basilar membrane explained in Section III. These mechanisms
are very well researched and understood. However, the neuronal
processing along the auditory pathway up to the cortex is still a
heavily discussed subject in biological research.

The binaural pathway shown in Fig. 4 works to process loca-
tion information about sound sources [11]. The cochleotopic
mapping of the frequencies along the basilar membrane is
passed through by the acoustic nerve to the next brain area,
the cochlear nucleus (CN) [12]. The superior olivary complex
(SOC) is the first place in the pathway where neurons receive
input from both ears. The SOC comprises two main nuclei: The
lateral superior olive (LSO) mainly works at high-frequencies
using mainly sound amplitude differences and the medial supe-
rior olive (MSO) mainly works at low frequencies using time-
delay differences [13]. Nevertheless, also some ITD-sensitive
neurons are distributed across the LSO. Similar response types
are found in neurons sensitive to ITDs in two signal types:
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low-frequency sounds and envelopes of high-frequency sounds
[13]. Studies in which the SOC is selectively damaged have
demonstrated that it plays an essential role in the localization of
the source of a sound [14]. The second stage b) of our model in
Fig. 2 is explained in Section IV. It can be viewed as a technical
model for the ILD and ITD extraction of LSO and MSO, that is,
a model that provides the same functionality without attempting
to be biologically faithful at the neuronal level.

One level higher, a tonotopic mapping according to different
sound source positions can be found. In the inferior colliculus
(IC), the same basic types of signal specificity remain, pre-
sumably due to inputs arising from the MSO and LSO [13].
However, other types of information gathered from the ear, such
as timbre and frequency, appear to cross over at different points
[14]. Neurons in the central nucleus of the IC (CNIC) are tuned
to narrow frequency bands and also react to ITDs and ILDs
[2]. The neurons of the external nucleus of the IC (ENIC) react
differently compared to the neurons in the CNIC. Here, the
neurons are tuned to wide frequency bands and single sound
source positions [2]. It has been shown that lesions in the IC
also result in a loss of the ability to localize sound [14]. The
third stage c) of our model in Fig. 2 can be interpreted as a tech-
nical model that implements the frequency versus sound source
position mapping of the ENIC and is explained in Section V.

The final decision of sound source position is believed to
occur in auditory cortex (AC) and the combination of binaural
cues with cues from other sensory inputs for combining sensory
information is done in the superior colliculus (SC) [15]. The
fourth stage d) of our model in Fig. 2 introduces a probabilistic
model for SC to decide from where the sound has been sent and
is explained in Section VI.

Some biologically inspired models of the MSO and LSO
have already been developed, like the Jeffress Model [16],
which extracts ITDs using a neuronal network with one layer,
or the Stereausis Algorithm [17], [18], which extracts a two-
dimensional (2-D) representation of ITDs using the phase shift
of the filters of a cochlear filterbank. Several models for sound
localization are based upon these principles and their extensions
[8], [19]–[22].

Nevertheless, our model should be seen as a biologically
motivated system with respect to the function and informa-
tion mapping of the brain areas like MSO, LSO, as well as
ENIC, and SC. However, it does not model the functionality
with spiking neurons but with correlation-based methods and
a functional probabilistic description for representation and
estimation of lateral sound source position.

III. COCHLEA SIMULATION

To model the cochlea and achieve a cochleotopic mapping
of the signal frequencies over time, the auditory filterbank
developed by Patterson et al. [23] is used. This filterbank is
based on equivalent rectangular bandwidth (ERB)-filters, which
are bandpass filters that have different bandwidths bc for differ-
ent characteristic frequencies fc = ωc/2π. The Glasberg and
Moore parameters [24] are chosen to gain a filterbank behavior
comparable to the basilar membrane related to neuroacoustic
experiments. Using these parameters one can compute fc and bc

Fig. 5. Example of the gain responses of the Patterson–Holdsworth auditory
filterbank with 16 characteristic frequencies. On a logarithmic scale the dis-
tance of neighboring characteristic frequencies fc is approximately the same.
Therefore, there is an increase of the overlap of the bandwidths with increasing
frequency.

that lead to a typical overlap of the bandwidths on a logarithmic
scale, as illustrated in Fig. 5. One ERB-filter approximates the
frequency-dependent haircell activity at a particular location
on the basilar membrane. For low frequencies the bandwidths
are narrow with little overlap of neighboring filters while for
higher frequencies the bandwidths get larger and the overlap
increases. The ERB-filter Fc(z) formulated in (1) is a discrete
eighth-order filter in z consisting of four Gammatone filters
of second order as described in [25] with the corresponding
z transform

Fc(z) =
(

Tz

z2 − 2e−bcT cos(ωcT )z + e−2bcT

)4

·
2∏

j,k=1

(
z − e−bcT

(
cos(ωcT ) + (−1)k

×
√

3 + (−1)j21.5 sin(ωcT )
))

.

(1)

Every ERB-filter of the filterbank shifts the phase of its
characteristic frequency ωc = 2πfc as can be seen in Fig. 6.
Therefore, every characteristic frequency that is part of the
input signal appears with a different phase distortion in the
cochleagram. This complicates the process of comparing events
across frequency channels because the frequency information
of all frequency channels fc at one timestep t in the cochlea-
gram does not correspond to one single timestep of the input
signal. To eliminate this disadvantage, time delays can be intro-
duced to compensate the phase distortions. For convenience, we
chose to use forward–backward filtering as described in [26] to
achieve a phase-compensated cochleagram shown in Fig. 7 that
is generated by stage a) of Fig. 2 from our system.
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Fig. 6. Example of a cochleagram of a clap sound with the different phase
shifts of the ERB filters.

Fig. 7. Example of the phase-compensated cochleagram of Fig. 6.

Forward–backward filtering, that is, filtering the signal of-
fline first forward and then backward in time results in precisely
zero-phase distortion and doubles the filter order [26], [27].
This improves the ITD and ILD representation explained in
Section IV because the different channels of the cochleagram
show the activities of the frequencies as they arrive at the mi-
crophone without phase distortion. Therefore, the information
of the frequency channels can be better combined at every
timestep using small patches (time–frequency windows) of the
cochleagrams of the left and right ear of a robot head. Never-
theless, forward–backward filtering is useful but not necessary
for our system. It works also with the nonphase-compensated
cochleagrams but the performance increases noticeably for the
compensated system.

IV. BINAURAL CUE EXTRACTION

The quality of the estimation of the azimuthal sound source
position depends on the accuracy of the extraction of ITDs and
ILDs. The difficulty in this context is that binaural differences

Fig. 8. Example of an ITD activity map, CITD, for α = 0◦ deviation of a
clap sound.

in phase and level strongly vary over frequency (while the ITDs
stay constant) and cannot be unambiguously assigned to the
sound source position. For every frequency and position of a
sound source there exists a characteristic ITD and ILD, but the
measurement of the ITD and ILD cues is ambiguous. In our
system, the cue extraction measures ITD and ILD activities
for every possible time-delay and every frequency based on
a straight correlation method. This leads to representations
of ITDs and ILDs by 2-D maps over frequency versus time-
delay (matrices), the activity maps CITD and CILD of Fig. 2,
which can later be processed together to resolve the inherent
ambiguities. Examples of such activity maps are shown in
Figs. 8–11. The calculation of the activity maps is explained
below.

In the rest of the section, we use the following notations:
simple font for scalars (a, A) and bold for vectors and matrices
(a, A). 1, 1 are a vector of ones and a matrix of ones,
A � B denotes a componentwise multiplication of two vectors
or matrices and A©α a componentwise exponentiation by α of a
vector or matrix.

To extract ITD and ILD activities for every timestep t small
weighted patches of the left ear cochleagram L ∈ Rm×n are
compared with weighted patches of the right ear cochleagram
R ∈ Rm×n. To do this, we define W � Lf,t as a patch of
signal amplitudes of the left cochleagram L anchored at the
cochleagram position (f, t) of the size k × l with k � m
and l � n and weighted with the window W ∈ Rk×l (e.g., a
2-D Gaussian window) that restricts the size of the patch and
weights the position (f, t) the patch represents.

One possibility to measure activities for the ITDs is to
assume that all amplitude values inside of a patch around (f, t)
have a common time-delay between left and right ear, resulting
in a time displacement ∆t of the patch of the right cochlea-
gram with respect to the patch of the left cochleagram. This
assumption basically amounts to a search for correspondences
of weighted cochleagram patches (displaced with respect to
each other) W � Lf,t and W � Rf,t+∆t.
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To formulate the calculation of the ITD activities more
precisely, we recur to a generative model [28] that is orig-
inally used in order to determine velocity distributions for
optical flow computation and that can also be used here in
order to approximately describe the connection between the
cochleagrams of the left and right ear: every cochleagram patch
W � Lf,t is considered to be independent of its neighboring
cochleagram patches W � Lf+∆f,t at a particular time t.
Furthermore, every cochleagram patch of the right ear W �
Rf,t+∆t is causally linked with a cochleagram patch of the left
ear W � Lf,t, in the following way: we assume that a patch
of the left cochleagram W � Lf,t within an associated time-
delay ∆t may be found in the right cochleagram R at position
(f, t + ∆t), so that for this particular patch

W � Rf,t+∆t = W � Lf,t (2)

holds. In addition, we assume that during this process the
amplitudes are jittered by noise η, and that a mean shift and
level difference of the amplitude of signal frequencies between
the left and right cochleagram may occur. These variations in
amplitude and bias are accounted for by an adjustable scaling
parameter λ and an adjustable bias κ so that we arrive at

W � Rf,t+∆t = λW � Lf,t + κW + η1. (3)

Solving (3) for η1 and assuming that the image noise η is
zero-mean Gaussian with variance ση, i.e.,

η1 = W � Rf,t+∆t − λW � Lf,t − κW = A

→ prob(A) ∼ e
− 1

2σ2
η
‖A‖2

the determination that Lf,t is a match for Rf,t+∆t leads to the
activity map elements

Ct
ITD(f,∆t) =

1
ση

√
2π

e
− 1

2σ2
η
‖W�(Rf,t+∆t−λLf,t−κ1)‖2

(4)

for the ITD cue containing the activities for all characteristic
frequencies f and all time-delays ∆t at a certain timestep t.

To gain a patch matching measure that is almost amplitude
and bias invariant, we now proceed to make (4) independent of
λ and κ. For this purpose, we maximize the measurement in (4)
with respect to the scaling and shift parameters, λ and κ. This
amounts to minimizing the exponent in (4), so that we want
to find

{λ∗, κ∗} := min
λ,κ

∥∥W � (Rf,t+∆t − λLf,t − κ1)
∥∥2

. (5)

Partially differentiating (5) with respect to λ and κ, setting these
partial derivatives to zero and analytically solving the resulting
equations

∂

∂λ, κ

∥∥W � (Rf,t+∆t − λLf,t − κ1)
∥∥2

= 0 (6)

with respect to λ and κ leads to

λ∗ =
"Rf,t+∆t,Lf,t · σRf,t+∆t

σLf,t

and (7a)

κ∗ =µRf,t+∆t − λ∗ · µLf,t with (7b)

µX = 〈X〉 :=
1
T X � W©2

1

1T W©2 1

(7c)

σ2
X = 〈X©2 〉 − 〈X〉2 and (7d)

"X,Y =
1

σX · σY
〈(X − µX1) � (Y − µY1)〉 (7e)

where X, Y have to be replaced by Rf,t+∆t, Lf,t, respectively.
The weighted empirical correlation coefficient "Rf,t+∆t,Lf,t ∈
[−1; 1] is an efficient standard correlation measure [29] with 1
meaning the patterns Rf,t+∆t and Lf,t are fully correlated and
−1 the patterns are fully anticorrelated.

Inserting (7a) and (7b) into (4), so that λ = λ∗ and κ = κ∗,
leads to the final ITD map activities

C̃t
ITD(f,∆t) =

1
ση

√
2π

e
− 1

2 ·
(σ

Rf,t+∆t

ση

)2
(

1−σ2
Lf,t,Rf,t+∆t

)
.

(8a)

Additionally, the activities of the ITD map C̃t
ITD(f,∆t) are

normalized with respect to the time-delays ∆t in the way

Ct
ITD(f,∆t) =

C̃t
ITD(f,∆t)∑

∆t C̃
t
ITD(f,∆t)

. (8b)

This enhances the activities of a unimodal distribution over
∆t for a fixed characteristic frequency, and reduces the activ-
ities with multimodal or flat distributions within a frequency
channel.

Equation (8a) ensures that local changes in level or bias have
minimal influence on the accuracy of the correlation. The bin-
aural signals contribute to the ITD activity map primarily when
the signal-to-noise ratio is high. In all experiments the variance
of the noise σ2

η is chosen to be 10% of the mean variance of all
local patches from the left and right cochleagrams.

The calculation of the ILD activity map Ct
ILD(f,∆t) arises

from (7a) that describes the optimal λ∗ for the compensation
of level differences between the two ears. The ratio of the vari-
ances σLf,t/σRf,t+∆t is a measure for the level differences and
the multiplication with the correlation coefficient "Rf,t+∆t,Lf,t

causes the level ratio to contribute to the correct time-delay.
For the ITD measurement according to (8), the level ratio

(and therefore the ILD) is explicitly neglected using the cor-
relation coefficient because it is normalized due to the means
and the variances. For the ILD measurement, we proceed in a
complementary way using only the level ratio and neglecting
the correlation coefficient, that is, neglecting the ITD. To get
the ratio values in a proper range, the logarithmic ratio is
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Fig. 9. Example of an ITD activity map, CITD, for α = 30◦ deviation of the
same clap sound as in Fig. 8.

calculated. This modified version of λ∗ serves as the ILD
activity formulation

Ct
ILD(f,∆t) = 20 log10

σLf,t

σRf,t+∆t

. (9)

The level ratio is computed for all inspected time-delays ∆t
to be sure the correct level ratio corresponding to the real
azimuthal position is existent in the ILD measurement. This
leads to an ILD activity map with the same dimensions as
the ITD activity map measured for all frequencies and time-
delays. In Figs. 8 and 9, examples of ITD activity maps that
correspond to two different azimuthal positions α = 0◦ and
α = 30◦ for a binaural clap sound2 are given. The two maps are
differently activated with approximately the same periodic and
symmetric pattern but differently shifted in time ∆t dependent
on the position angle α. As the sound source relocates to the
side α = 30◦, the activities in Fig. 9 are shifted approximately
about 0.5 ms compared to Fig. 8. In Figs. 10 and 11, examples
of ILD activity maps that correspond to the examples of the
ITD activity maps in Figs. 8 and 9 are given. Notice that for
α = 0◦ the activities are in the range of [−5 dB; 4 dB] and vary
strongly over frequency. For α = 30◦ the activities are in the
range of [−10 dB; 8 dB] and the profile along the frequency
axis in Fig. 10 is completely different as compared to Fig. 11.
Interestingly, the activities of the ILD map along the time-
delay axis (e.g., in Fig. 10) are often higher at time-delays ∆t
where there is high activity in the corresponding ITD map (e.g.,
in Fig. 8) as well. At each timestep these two maps jointly
characterize the sound source position angle.

To achieve a probabilistic description of the sound source
position, as shown in part c) of the system in Fig. 2, reference
maps IITD and IILD for representative positions around the
robot head are learned (see part b) of the system structure in

2All signals were emitted by a loudspeaker and recorded by the microphones
of a robot head in an anechoic chamber (see also Fig. 12).

Fig. 10. Example of an ILD activity map, CILD, for α = 0◦ deviation of the
same clap sound as in Fig. 8.

Fig. 11. Example of an ILD activity map CILD for α = 30◦ deviation of the
same clap sound as in Fig. 8.

Fig. 2). The use of reference maps that need to be learned anew
for different robot heads enables the system to adapt to any
kind of robot head without the necessity to rely on functions
that explicitly describe the relation between the interaural cues
and the azimuthal position. These head-dependent relations are
therefore implicitly contained in the reference maps.

Learning is done in a supervised way, which means that
the sound position is known during the learning process. The
learning step is done separately for the ITD and for the ILD
measurements and results in ITD and ILD reference maps
IITD(α, f,∆t), IILD(α, f,∆t) that are representatives for spe-
cific positions α for all frequencies f of the cochleagram.

Fig. 12 illustrates how learning is done in practice. A sound
source S is placed at a particular distance D and azimuthal
position α. Then, different signals, which consist of a variety of
wideband sound signals, e.g., sentences and sounds spoken or
generated by different persons, and sinusoidal narrowband test
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Fig. 12. Experimental setup for learning reference maps for a specific robot
head (Miiro from Darmstadt University of Technology) in an anechoic cham-
ber. The microphones (low-cost/no-name dynamical cardioid microphones)
are placed on an aluminum bar with a distance of 14 cm and a spherical
massive styrofoam head in between. The signals are recorded with a stan-
dard PC soundcard (Creative Soundblaster AWE64) with a sampling rate of
44 100 Hz and a 16-bit A/D converter.

signals, e.g., generated from a signal generator, covering the
frequency spectrum that the system should be able to process,
are emitted by a loudspeaker in an anechoic chamber and the
corresponding ITD and ILD activity maps CITD and CILD are
calculated. All activity maps for the same position are averaged
over the number of measurement timesteps per position tα
according to

Ic(α, f,∆t) =
1
tα

∑
tα

Ctα
c (f,∆t) (10)

to gain head-specific and separate ITD and ILD reference
maps Ic with c ∈ {ITD, ILD} that are general concerning the
bandwidth and type of signal. This procedure is done for all
chosen positions α. Because the 2-D reference maps change
their patterns smoothly over azimuthal angle, only a few po-
sitions for learning have to be processed. For our application,
thirteen positions for learning reference maps have been chosen
that are equally distributed over azimuthal plane in a range of
α ∈ [−90◦; 90◦] according to the gaze direction of the robot
head with a common distance D of 2 m. The distance D is not
a critical parameter as long as it is chosen to be larger than 1 m.
For the classification results in Section VII, the sound sources
have been placed at different positions in the range of 1–3 m.

V. LIKELIHOOD FORMULATION

After learning, the system is able to calculate a likelihood
distribution for sound source position-estimation in the follow-
ing way: at every timestep t the binaural signal is preprocessed
with the cochlear filterbank and ITD and ILD correlation
measurements are calculated using (8a) and (9). The resulting
ITD and ILD activity maps Ct

c(f,∆t) are then compared with
learned reference maps Ic(α, f,∆t) to gain one single discrete
probability distribution. This single distribution is represented

Fig. 13. Example of a likelihood distribution only measuring the ITD cue
P (zt|α, f, c = ITD) for 45◦.

in the two likelihood maps PITD/ILD := P (zt|α, f, c) that are
calculated as follows:

P (zt|α, f, c)=
1

σP

√
2π

e
1

2σ2
P

∑
∆t

(Ct
c(f,∆t)−Ic(α,f,∆t))2

. (11)

Every distribution describes the conditional probability that the
measurement zt has happened at timestep t given a sound
source position α for each frequency channel f and each bin-
aural cue c. The measurements zt are the comparisons between
the activity maps Ct

c(f,∆t) and the corresponding reference
maps Ic(α, f,∆t) by the sum of squared differences summed
over all time-delays ∆t measured at every timestep t for every
frequency f for both cues c and for all position angles α for
which reference maps have been learned. In all experiments the
standard deviation σP is chosen channelwise to be 50% of the
mean value over α of all sums of squared differences between
Ct

c(f,∆t) and Ic(α, f,∆t).
In Figs. 13 and 14, the likelihood distribution separated into

ITD and ILD probabilities is shown. The speech signal is sent
from 45◦. The correct position is marked with a bold black line
within the distribution to show which frequencies contribute to
the position and how strong the contribution is. It can be seen
that the probability values along the frequency axis for position
45◦ are not outstanding. To enable a correct estimation of the
sound source position, we want to get rid of the dependencies of
the measurement zt on the frequency f and the cue c to arrive at
a conditional probability distribution P (zt|α) that only depends
on the sound position α. Furthermore, we want to estimate
the position for every timestep t and propagate the estimate
over time.

A. Estimation

As described in Section I, the localization ability differs
between the cues c dependent on the frequency f and the lo-
calization angle α. This is caused by the geometry and material
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Fig. 14. Example of a likelihood distribution only measuring the ILD cue
P (zt|α, f, c = ILD) for 45◦.

of the head and leads to ambiguities in the likelihood distri-
bution (multiple peaks). To reduce the ambiguities, conditional
probability distributions P (f |α, c) and P (c|α) can be defined
that incorporate knowledge about frequency and position angle
dependent preference of ITD or ILD cue for sound localization.

Concerning the Duplex Theory [9], the probability values of
P (f |α, c) for the ITD cue c can be given a smaller weight for
high frequencies because the ambiguity of the ITD measure-
ment rises with higher frequencies. Similarly, the probability
values of P (f |α, c) for the ILD cue c can be biased for high
frequencies because there is more binaural level difference
expected.

Due to the worse resolution of time-delay ∆t of the ITD cue
c with increasing azimuthal angle α of the sound source, the
probability values of P (c|α) for the ITD cue c can be chosen
so as to contribute less for large azimuthal angles. In contrast to
the ITD weighting, the probability values of P (c|α) for the ILD
cue c can be given a smaller weight for small azimuthal angles
because in this case the binaural level differences do not change
significantly (for the measurements on the robot head we used).

The probability values of P (f |α, c) and P (c|α) are stored in
the knowledge maps KITD and KILD of the localization system
shown in part c) of Fig. 2. They serve as separate frequency and
cue weightings conditioned by the cue and angle, respectively.
If there is no need to consider such preferences the probabilities
are assumed to be equally distributed.

Combining all the conditional probability distributions
P (zt|α, f, c), P (f |α, c), and P (c|α) by applying marginaliza-
tion [30] leads to the final likelihood distribution

P (zt|α) =
∑
f,c

P (zt|α, f, c) · P (f |α, c) · P (c|α). (12)

VI. POSITION ESTIMATION

To gain an estimate for the sound source position αt at
every timestep t, as outlined in part d) of Fig. 2, the posterior
distribution P (α|zt) over α has to be calculated. This is done

using Bayes’ Theorem [30] that is applied to the marginalized
likelihood P (zt|α) from (12) putting in prior knowledge P (α)
about the preferential treatment of sound positions α in the
following way:

P (α|zt) ∝ P (zt|α) · P (α). (13)

An assumption has to be made according to the prior P (α).
An appropriate prior can be chosen if general knowledge is
available about the environment the robot head is working in
or the task for which sound localization is used. A possible
example is a discussion scenario with several people. The prior
can be chosen to: 1) restrict the localization task to the visual
field to focus on several speaking people the robot is looking at
or 2) to emphasize to regions outside its visual field to react to
speakers the robot is currently not looking at.

The final sound source position estimation αt is calculated
using a maximum a posteriori (MAP) estimation [10]

α−t
MAP = argmaxα

(
P (α|zt)

)
. (14)

A. Propagation

To circumvent the problem of making prior assumptions,
the prior P (α) can be formulated using the previous posterior,
which means involving previous estimates in the prior assump-
tions and propagating the estimates over time. The simplest
assumption that can be made is that within the time interval
of propagation no changes in the sound source position appear.
This leads to the following time-dependent predictive prior:

P (α) := P t(α) = P (α|zt−∆t) (15)

whereas the momentary prior is simply the previous poste-
rior. Such a predictive model can very easily be augmented
to incorporate movements of the sound source. To consider
slight changes we extend the predictive prior to be a smoothed
version of the previous posterior leading to the following prior
formulation:

P t(α) =
∑
α′

P (α|α′) · P (α′|zt−∆t) (16)

with P (α|α′) chosen to be Gaussian distributed. This has the
effect that the larger the variance of P (α|α′) the less influence
the prior has on the new likelihood.

Fig. 15 shows four posteriors estimated at four different
consecutive times using (13) and an equally distributed prior
P (α) for a speech signal located at azimuthal angle α = 45◦.
Since the sound source is not moving and the points in time
are close to each other, processing only very short parts of
the signal, the posteriors look very similar. Using (16), the
prior P t(α) becomes time-dependent and the posteriors are
combined over time t. The result is shown in Fig. 16. The
posterior distribution gets more and more sharpened and peaked
at the correct position. That means that the probability that
α = 45◦ is the correct position of the sound source gets larger
with increasing time t.
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Fig. 15. Example of four posteriors P (α|zt) estimated at different times
for α = 45◦. Since the sound source does not move and the time between the
measurements is very short the posteriors are more or less the same. The highest
probability value is at the correct position but not outstanding.

Fig. 16. Example of four posterior probabilities P (α|zt) with the prior
P t(α) chosen to be propagated over time using (16) for the same signal as
in Fig. 15.

VII. CLASSIFICATION RESULTS AND ACCURACY

The training of the reference maps and the classification
of the test speech signals are carried out with a learn- and
test-set of speech signals covering different types of male and
female speakers saying different sentences. This is done for
13 angle positions equally distributed over the azimuthal range
in the field of view of the robot ranging from α = −90◦ up to
α = 90◦ according to the frontal sound occurrence, with 15◦

resolution between adjacent positions and discrete distances of
1, 2, and 3 m.

The training of the reference maps (see also Section IV) was
done once in an anechoic chamber in which 13 reference maps
each for ITD and ILD have been trained using 13 × 100 training
signals for 13 different positions and 100 speech and sound
signals.

The classification results for the test sets recorded in
the anechoic chamber are based on different signal parts

Fig. 17. Classification results for ITD cue only for signals recorded in an
anechoic chamber resulting in an accuracy of 86.9%.

Fig. 18. Classification results for ILD cue only for signals recorded in an
anechoic chamber resulting in an accuracy of 89.1%.

at 13 × 38 × 47 different times whereas for each of the
13 classes 38 speech and sound signals are processed over
47 timesteps t for all three distances 1, 2, and 3 m. Every
timestep lasts 0.023 ms.3 The test sets recorded in the rever-
berant room were spoken from a male person in which the test
sets of the anechoic chamber were emitted from a loudspeaker.
There is no knowledge induced to consider preferences on
some positions or cues, which means P (f |α, c) and P (c|α) are
equally distributed.

A. Anechoic Chamber

Analyzing only the ITD cue leads to the classification results
shown in Fig. 17 resulting in an accuracy of 86.9%. The
confusion matrix is displayed, with αt being the estimated
position angle and α the actual position angle. For the ILD
cue only the confusion matrix is shown in Fig. 18 resulting in

3Because the sampling rate was chosen 44 100 Hz one timestep lasts
0.023 ms ≈ (44 100 Hz)−1.
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Fig. 19. Classification results for joint classification of ITD and ILD cues for
signals recorded in an anechoic chamber resulting in an accuracy of 98.9%.

Fig. 20. Classification results for the classification of ITD cue only for signals
recorded in a reverberant room and integrated over 0.2 ms after onset resulting
in an accuracy of 61.7% for a location resolution of 15◦ and 84.9% for a
location resolution of 30◦.

an accuracy of 89.1%. The results gained by combining both
cues and propagating the distributions over time can be seen
in Fig. 19 resulting in an overall classification result with an
accuracy of 98.9% for a location resolution of 15◦.

B. Reverberant Room

In Figs. 20–22, the separated (ITD and ILD) and joint
classification results for a male person saying Hallo Miiro
(the name of the robot) are shown using the same head and
the unmodified system with the reference maps trained in
the anechoic chamber. The reverberant room was a normal
living room with a reverberation time T60 ≈ 0.43 s, a size
of 5 × 5 × 2.50 m and with the first early reflections arriving
at ≈ 0.14 ms. Only the first 0.2 ms after onset of the now
reverberated signal (which equals only the part all of Hallo)
are processed to reduce the errors because of sound reflections.
The onset is detected by applying an experimentally chosen

Fig. 21. Classification results for the classification of ILD cue only for signals
recorded in a reverberant room and integrated over 0.2 ms after onset resulting
in an accuracy of 33.2% for a location resolution of 15◦ and 39.6% for a
location resolution of 30◦.

Fig. 22. Classification results for joint classification of ITD and ILD cues for
signals recorded in a reverberant room and integrated over 0.2 ms after onset
resulting in an accuracy of 68.69% for a location resolution of 15◦ and 87.9%
for a location resolution of 30◦.

threshold dependent on every frequency channel and starting
the integration when the amplitude in one of the channels has
reached its threshold (therefore the H of Hallo is neglected).
The result is still reasonable with an accuracy of 61.7% for
ITD, 33.2% for ILD, and 68.7% for the joint classification of
both cues for a location resolution of 15◦ and an accuracy of
87.9% for both cues and a location resolution of 30◦.

VIII. DISCUSSION AND OUTLOOK

We see that the proper separation of ITD and ILD cues
extracted at the beginning of the localization process and the
final combination of position hypotheses for classification at the
end of the localization process improves the sound source posi-
tioning capabilities considerably. In general, we have observed
that with rising resolution in the locations for the classification
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task the discrimination ability is reduced because confusion
between neighboring positions occurs more often.

With the rising number of reflected sound waves occurring
at the two microphones the ambiguities in the probability
distribution rise and the probability values for every location go
down and more or less equalize. This leads to a degradation of
the performance in the reverberant environment. The number
of timesteps used for integrating the information influences
the performance only in a reverberant environment. With the
experimentally chosen 0.2 ms we get enough information to
integrate and resolve ambiguities in the measurements but also
do not integrate too long so that the reflections do not introduce
enough disturbed measurements that degrade the classification
results. Even better performance can be obtained by using more
than just one onset of a signal but this has not yet been studied
within our research.

The ability of humans to localize sound sources in reverber-
ant spaces very well is thought to be assisted by the precedence
effect, which assumes that the perception of interaural cues
provided by an indirect (reflected) sound is strongly influenced
by the presence of the direct sound [31]. This implies the
need for a method that is able to integrate as much interaural
information as possible before the first reflection reaches the
ears. There are some researchers trying to analyze and model
these effects [31]–[33].

Beside the estimation and compensation of incoming echo
[33] there is an interesting paper by Faller and Merimaa [32]
who try to model some aspects of the precedence effect and are
able to alternately localize concurrently active sources while
ignoring the reflections and superposition effects. The main
idea is to select ITD and ILD cues only from critical bands with
high energy using an interaural coherence measurement (ICM)
for selection. The ICM is the maximum value of the normalized
cross correlation between the interaural signals.

Compared to our system, the probability value of the MAP
estimator is similar to the ICM. Therefore, it would be easy to
introduce the same selection mechanism they use to our system
by replacing the ICM with the probability value of the MAP
estimator. However, they do not consider the way the auditory
system combines information from different critical bands.
Further on, the method for selecting or discarding binaural cues
is threshold-based and the localization process is purely done
on the maximum values of the cross correlation, which means
only one hypothesis for each cue per timestep is processed.

Our system is able to handle ambiguous and weak mea-
surements by keeping several position hypotheses concurrently
and improve or resolve ambiguous estimations using a proper
integration method. Instead of a pure selection mechanism
with our system, a similar processing with a slightly smoother
transition could be implemented with adaptive weights in the
knowledge maps. This but also localization and tracking of
several speakers will be part of our future research.

IX. CONCLUSION

We have presented a binaural localization system that is able
to localize human speech signals in the azimuthal plane with
a very high accuracy of up to 98.9%. The modeling of the

system is inspired by the human auditory pathway for sound
localization and keeps several aspects of biologically equivalent
tonotopic mapping of ITD and ILD as well as frequency versus
sound-location mapping. From the point of view of representa-
tion and function the ITD activity map is a model of the MSO
whereas the ILD activity map is a model of the LSO. The ILD
and ITD likelihood maps can be seen as a model of the CNIC
and the Bayesian Inference mechanism as a model for ENIC.
The system is able to adapt to different robot heads just by
learning some new reference maps in an echo-free room so
that they are not dependent on the reverberation characteristics
of any environment. The procedure generalizes across sounds
and locations given the head model implicitly represented in
the reference maps. The probabilistic approach for position
estimation and propagation proofs to be a very efficient way
to jointly analyze ITD and ILD and could also be extended
to applications on tracking moving sound sources and/or to
separate several speakers.
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