I}Jﬂ@ﬂ Honda Research Institute Europe GmbH
Honda Research Institute EU httpS//WWW honda'ri de/

Multi-network evolutionary systems and
automatic problem decomposition

Vineet Khare, Xin Yao, Bernhard Sendhoff

2006

Preprint:

This is an accepted article published in International Journal of General

Systems. The final authenticated version is available online at:
https://doi.org/[DOI not available]

http://www.tcpdf.org

International Journal of General Systems

Vol. 00, No. 00, DD Month 200x, 1-14

Multi-network evolutionary systems and automatic decomposition of
complex problems

VINEET R. KHARE{, XIN YAO*}, and BERNHARD SENDHOFF §
1 CERCIA, School of Computer Science, The University of Birmingham,
Birmingham B15 2TT, UK
1 Honda Research Institute Europe GmbH, Carl-Legien-Strafle 30, 63073,

Offenbach/Main, Germany
(Received 00 Month 200z; In final form 00 Month 200z)

Multi-network systems, i.e., multiple neural network systems, can often solve complex problems more effectively
than their monolithic counterparts. Modular neural networks tackle a complex problem by decomposing it into
simpler sub-problems and then solving them. Unlike the decomposition in modular neural networks, a neural network
ensemble usually includes redundant component nets and is often inspired by statistical theories. This paper presents
different types of problem decompositions and discusses the suitability of various multi-network systems for different
decompositions. A classification of various multi-network systems, in the context of problem decomposition, is
obtained by exploiting these differences. Then a specific type of problem decomposition, which gives no information
about the sub-problems and is often ignored in literature, is discussed in detail and a novel modular neural network
architecture for problem decomposition is presented. Finally, a co-evolutionary model is presented, which is used
to design and optimize such modular neural networks with sub-task specific modules. The model consists of two
populations. The first population consists of a pool of modules and the second population synthesizes complete
systems by drawing elements from the pool of modules. Modules represent a part of the solution, which co-operate
with each other to form a complete solution. Using two artificial supervised learning tasks, constructed from smaller
sub-tasks, it can be shown that if a particular task decomposition is better than others, in terms of performance on
the overall task, it can be evolved using the co-evolutionary model.

Keywords: Multi-network Systems, ensembles, modular neural networks, co-evolution.

1 Introduction

Decomposing a complex computational problem into sub-problems, which are computationally
simpler to solve individually and which can be combined to produce a solution to the full problem,
can efficiently lead to compact and general solutions. Ideally for a good decomposition, these sub-
problems will be much easier than the corresponding monolithic problem. In most cases such a
decomposition relies on human experts and domain analysis. A system that can produce modules,
which solve a subset of a big problem, can save us from manually crafting them. Also it can
help discover potentially useful but unintuitive decompositions overlooked by humans. Ideally,
both - the number of modules and the role that each one plays in the solution, should emerge
automatically within the system. Many problems can only be decomposed into interdependent
subcomponents hence changes in the role of one subcomponent effect the others. So the solutions
should co-adapt and collectively solve the problem. Co-evolution is well suited for modelling the

*Tel.:+44-121-414-3747. E-mail: x.yaoQcs.bham.ac.uk

2 Khare et al.

interdependencies among the subcomponents of the system and has been used in the literature to
implement the divide-and-conquer strategy for tackling complex computational problems. These
co-evolutionary methods can be subdivided further into two categories — single and two-level co-
evolutionary methods. In single level co-evolutionary methods (Potter and DeJong 2000, Yong and
Miikkulainen 2001) the sub-components/modules are evolved in separate genetically isolated sub-
populations and fitness evaluations for these individuals are carried out by combining representative
individuals from these subpopulations and then passing back the fitness of the system, thus created,
to the representative individual. In two-level co-evolutionary methods (Moriarty and Miikkulainen
1997, Garcia-Pedrajas et al. 2002, Khare et al. 2004, Garcia-Pedrajas et al. 2005) modules and
complete systems are co-evolved in two separate populations.

This work concerns with the problem decomposition aspects of modular neural networks. It
presents a taxonomy of literature on problem decomposition in machine learning and illustrates
the correspondence between problem decomposition and multiple neural network or multi-network
systems. It also presents a novel modular neural network architecture suitable for a very generic
type of problem decomposition, often ignored in literature and describes a two-level co-evolutionary
method to design and optimize these modular neural networks which have sub-task specific mod-
ules. A module represents a part of the solution, which co-operates with others in the module
population to form a complete solution. Fitness of individuals in the module population is deter-
mined by their contribution towards various systems in system population. Evolutionary pressure
to increase the overall fitness of the two populations provides the needed stimulus for the emergence
of the sub-task specific modules.

The rest of the paper is organised as follows. In Sec. 2 a brief background on problem decomposi-
tion and its correspondence with multi-network systems is presented. Sec. 3 discusses modularity in
artificial neural networks (ANNs) and its effects. Sec. 4 presents a two-level Radial Basis Function
(RBF) Network architecture which is to be designed using the co-evolutionary model presented in
sec. 5. Conclusions follow in sec. 6 with thoughts on usefulness of modularity in ANNs.

2 Background

2.1 Problem decomposition in machine learning

Divide-and-conguer strategy is often used for tackling complex computational problems. Problem
decomposition involves dividing a problem into sub-problems, solving these separately and then
combining the sub-problem solutions to obtain the solution to the original problem. In the context
of machine learning, there are various ways in which this can be achieved. This section presents a
taxonomy of literature on problem decomposition (fig. 1). In order to categorize existing literature
on problem decomposition a few concepts are introduced. In sequential decomposition one tries to
divide the overall learning task into steps. Mostly the first step involves an unsupervised learn-
ing phase which makes the subsequent supervised learning easier. Parallel decomposition involves
dealing with sub-tasks simultaneously but separately e.g. the classic what-and-where vision task.
Within parallel decomposition one finds task-oriented and data-oriented types of decomposition. In
task-oriented decomposition one looks for decomposition cues in the application task itself. Tasks
may consist of relatively independent sub-tasks. The extent of information available about the
sub-tasks is crucial and can help in designing the solution to the problem. In data-oriented decom-
position, data available for learning a problem is decomposed. A decomposition can be performed

Multi-network evolutionary systems 3

Problem Decomposition
acallel sequential
P (unsupervised and supervised)

task-specific
unsupervised

combined
sub-tasks

examples l
Networks, methods

Ensembles using MOE, class

optimal
feature

includin; feature de- domain 3 3
(8 B relation SOM, selection,
bootstrap- composition knowledge N

s based de- PCA learning
resampling. methods to pre-

from
hints

p composition
techniques), structure P
Adaptive

MoE

neural network ensembles modular neural networks

Figure 1. Correspondence between Problem Decomposition and Multi-network Systems.

on the input space (horizontal) or on the input variables (vertical) (Ronco et al. 1997). Examples
of horizontal input space decomposition include RBF Networks, Neural Network Ensembles (in-
cluding bootstrap re-sampling techniques) and Adaptive Mixture of Local Experts (Jacobs et al.
1991b). Examples of vertical input space decomposition include feature decomposition methods
which use information theoretic measures to decompose the input variables into packs (Liao and
Moody 1999, Maimon and Rokach 2002), without using the target variables.

Within sequential decomposition of a task into supervised and unsupervised learning phases one
finds instances where unsupervised learning is independent of the supervised learning task to be
followed. In general transformations of inputs or features are obtained to facilitate the super-
vised learning. Examples of independent unsupervised learning in sequential decomposition include
topology-preserving maps, self-organization to visual features and principal component extrac-
tion (Hrycej 1992, chap. 4) and others (Yang and Moody 1999, Zaffalon and Hutter 2002). Task-
specific unsupervised learning in sequential decomposition involves instances where unsupervised
learning is performed with a bias in favour of the supervised learning to be followed. Examples
include supervised feature discovery, optimal feature subset selection for a given learning algo-
rithm (Kohavi and John 1997), learning from hints (Abu-Mostafa 1993) and others (Opitz 1999,
Sindhwani et al. 2004).

In task-oriented parallel decomposition when the decomposition into sub-tasks is known, one
can have separate feedback from each sub-task to design a solution to the problem, which is not
possible when the sub-tasks are mized. In literature, for task-oriented parallel decomposition, one
usually finds the following;:

e One sub-task at time t: f/(X,Y) = fi(X) OR fo(Y) (Jacobs et al. 1991a, Jordan and Jacobs

4 Khare et al.

1995, Lu and Ito 1999)

e Sub-tasks on separate outputs: f(X,Y) = {f1(X), /2(Y)} (Jacobs et al. 1991b, Hiisken et al.
2002)

e Combination of sub-tasks at one output: f(X,¥) = g(f1(X), f2(Y)) (Jenkins and Yuhas 1992,
Lendaris and Mathia 1994),

where X and ¥ are subsets of the attributes of the problem, which may or may not be overlapping.
In the first two instances the decomposition is known a priori and separate feedback is available
to the learning system for separate sub-tasks. This can be used to embed a priori knowledge into
the system and possibly train the modules independent of each other.

This work involves the third instance with much less knowledge about the problem (function
g unknown). Mized sub-tasks task-oriented parallel decomposition is arguably the most generic
form of problem decomposition and has barely been mentioned in the neural network literature.
Available literature on such type of problem decomposition relies heavily on the domain knowledge
available. This work aims to develop a system which can perform this type of decomposition with
least amount of domain knowledge.

2.2 Multi-network systems

Multiple neural networks are an obvious choice for various types of problem decompositions men-
tioned in sec. 2.1. In addition to providing performance improvement over single network solutions,
they also have other advantages depending on the type of combination. Multi-Net systems can be
divided into two main categories — neural network ensembles (NNEs) and modular neural networks
(MNNs). A NNE is a collection of redundant neural networks working together and has primarily
statistical motivations behind it. Each member of a NNE, which is capable of solving the com-
plete task, outputs an estimation of the complete task starting from different training datasets
and weight initializations, hence with an increase in the number of networks the estimated value
gets closer and closer to actual value (Brown 2004). A NNE distributes the learning task among a
number of experts, which in turn divides the input space into a set of subspaces. Ensembles provide
better generalization abilities and robust solutions. In MNNs, unlike ensembles, each constituent
network only performs a part of the overall task and all the networks are required to arrive at a
solution to the task. These are used when a monolithic system is not able to perform the complete
task (Sharkey 1997) or when there is an improvement in performance due to task decomposition.
This improvement stems from the inherent separation of sub-tasks, which separates conflicting
features that compromise the ability of a fully-connected network on the sub-tasks. Task decompo-
sition provided by modular neural networks can also lead to the solution being easier to understand
and modify. Also, a modular solution has fewer parameters which leads to better generalization
abilities. One can classify MNNs into two categories - MNNs with modular learning and MNNs
with modular structure. MNNs with modular learning are used to deal with sequential problem
decomposition where learning is performed in steps by different networks. While MNNs with mod-
ular structure deal with parallel problem decomposition and sub-parts of the network solve the
sub-problems simultaneously.

Redundancy and modularity are the two characteristics based on which one can differentiate
between NNEs and MNNs (Sharkey 1999) but there are other multi-net architectures (Liu 1998,
Hansen 2000) that blur the boundary between the two and it has been suggested that this differ-
entiation is misleading (Brown 2004). Here this differentiation is made solely for the purpose of

Multi-network evolutionary systems 5

explaining the correspondence between problem decomposition and multi-network systems (fig. 1).

3 Modularity in ANNs

In sec. 2 we described how modular neural networks have been used in literature for problem
decomposition. The concept of modularity though is a bit illusory. Again there are many ways
in which modularity can be defined. A modularity measure can be derived from the connectivity
within a neural network (structural) or from the (functional) decomposition they perform. Here
a specific type of problem decomposition is dealt with (sec 3.1 presents one such representative
problem). This section defines a functional modularity measure (sec. 3.2) for this problem and
later explores how this measure is influenced by the type of network, mode of training and learning
algorithm.

3.1 Artificial problem: linear mixture of sub-tasks

As an example of a problem requiring task oriented parallel decomposition, an artificial time series
prediction task is constructed by combining two sub-tasks using a linear combination function.
Mackey-Glass (MG) (Mackey and Glass 1977) and Lorenz (LO) (Lorenz 1963) time series predic-
tion problems are used as the two sub-tasks. Detailed description of how these two sub-tasks are
generated is omitted here for space constraints and can be found in Khare et al. (2005). These

Problem Inputs Prediction Task
Mackey-Glass | MG3 MG, MG, MGy

Lorenz-z L03 LO2 L01 LO()

MG-LO MG3 | L03) MG2 | L02 MGl | LOl g(MGo, LO(])

Table 1. Artificial time series mixture problems. MG, = MG(t-xA1) and LO, = LO(t-xA2) where A; =1 and A = 0.02
are the time steps used to generate the two time series.

two time series (MG and LO) are mixed according to Table 1 to create the mixture problems.
Both sub-tasks involve prediction of the time series at time step ¢ based on three previous time
steps. For instance for Mackey-Glass task, MG(t) is to be predicted using MG(t-3A;), MG(t-
2A1) and MG(t-A;). The complete task is to predict g(MG(t), LO(t)). For all problems thus
created the only feedback, the network (modular or not) gets, is its performance on the combined
task (g). These two time series are relatively independent with a correlation coefficient of 0.032
for 1500 points and hence create mixture problems which favour a decomposition into indepen-
dent modules. A linear (Averaging) combination problem is constructed by using g as averaging
(g(MG(t),LO(t)) = 0.5(MG(t) + LO(t))).

3.2 Functional measure of modularity

Let Cz-ly and C{; be the correlation coefficients between the output of hidden unit 4 in module j
and the last (third) input of the Mackey-Glass and Lorenz time series, respectively. Last input
is chosen because it is a good approximation to the next step which is to be predicted (sub-
task). Modularity of the hidden unit ¢ in module j, m;; is defined as: my; = | |C}| — |C]| |-

6 Khare et al.

Note that —1.0 < C} < 1.0 and —1.0 < Cf < 1.0 imply 0.0 < my < 1.0. Modu-
larity of the network is the average of modularities of all hidden units in all the modules :
M= —1— Z"umMad numlw S rumUniti i and modularity measure for a fully-connected

structure is : My = m Z"“mUmt m;. Full modularity is achieved at M = 1.0, where there

is a complete separation of sub- tasks among hidden units.

3.3 ‘Global’ vs.‘clustering’ neural networks

The ‘global’ neural network as the MLP are characterised by the fact that all their nodes are
involved to process each pattern. This is the difference with ‘clustering’ neural networks, as the
RBF Networks, that process each pattern by involving only one part of their whole structure. This
clustering of input space represents horizontal data type decomposition and to achieve problem
decomposition automatically without much knowledge about the problem and the required de-
composition RBF networks are used instead of MLPs. Since the overall task consists of relatively
independent sub-tasks one would expect the decomposition along the number of patterns (hori-
zontal) for one sub-task would be different from the other. So during training it can be assumed
that some RBF units will specialize in MG task and others in LO task, thus also providing decom-
position along the number of features (vertical). So the horizontal problem decomposition in RBF
networks is expected to aid the vertical decomposition if the sub-tasks are relatively independent.

3.4 Modularity vs. mode of training

As seen in sec. 3.3, when both horizontal and vertical decompositions are performed simultaneously
one aids another. This is also visible from figs. 2(a) and 2(b), which show the learning curves of
an RBF network for the averaging problem. Here as the network learns the problem (horizontal
decomposition; fig. 2(b)) its hidden units also specialize in the sub-tasks (vertical decomposition;
fig. 2(a)). Fig. 2(a) shows the functional modularity index, for a RBF network, increasing with
training epochs. As expected this is not the case with MLP training (fig. 2(c)).

(a) Functional Modularity Index (RBF) c) Functional Modularity Index (MLP)

0.6

1kl !

02 :I) Ii'"{)" - 4 045
. L . L R . 04
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550
[[© Ba0.1 B In-0.1 % In-0.01 I-0.001 -~ In-0.0001 | [© Ba0.1 B In-0.1 = In-0.01 1n-0.001 -~ In-0.0001 |
(b) Normalized RMS Error (RBF) (d) Normalized RMS Error MLP)
1 = R N — 08 etz
i) IR ST S S 0.6
b b & ER R S
05 t . ® i) 1 0.4 "
> i ¢ ¢ 02
o -T-‘-_H'""' """H'H:"--t--- ’ I o S
o= o=
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550

Figure 2. Learning curves with means, upper and lower quartiles (30 runs) at every 100 epochs of functional
modularity indices (a and ¢) and normalized root-mean-squared errors (b and d) for the Averaging problem for
a RBF (left) and a MLP (right) network. Ba = Batch and In = Incremental steepest descent.

Figs. 2(b) and 2(d) show the learning curves for incremental learning (learning rate n = 10%; a =
—1, -2, —3 and —4) and batch learning (7 = 10~!). As one moves towards lower and lower learning

Multi-network evolutionary systems 7

rates (i.e. towards batch learning) the extent of specialization (or functional modularity) reduces
and for batch learning this value is very low, which also effects the overall learning performance of
the network. This is because in batch learning the gradient calculation averages over all possible
cases, hence correlations within a sub-problem are cancelled out.

3.5 A modular solution to the problem

Given the emergence of specialization among hidden units of the neural networks, one intuitive,
and probably the optimal, solution for the linear mixture problem would be a modular neural
network (fig. 3(a) and 3(b)) with modules solving the two sub-problems (the pure-modular structure,
fig. 4(b)). In fig. 4 various networks represent four different decompositions for the combined
problem. In order to validate the assumption that the pure-modular structure, being the intuitive
decomposition for the problem, is the optimal one the learning curves of all these structures for
the combined problem are compared. In addition, they are also compared with the pre-trained
pure-modular structure. As the name suggests, modules in pre-trained pure-modular structure
are trained separately from each other on individual sub-tasks. Since this structure has separate
feedback available from all the modules (which is not the case with any other structure) and has
pure modules, it can be used as a base case / ideal solution to the combination problem. These

A

X
X W

\{
v
¢ ombining
nawork

o

Y
(b) UNEAR (c) NON-LNEAR

! (?tB;N%II.EET\I?DLRK C%rg‘ﬁ)’glrlﬁg combining nework

Figure 3. A two-level (modular) RBF Network.

comparisons and the sub-task specialization of modules of the pure-modular structure into MG and
LO sub-tasks, shown in figs. 5(a), 5(b) and 5(c), indicate that it represents a good decomposition
of the task. It also fares well against the pre-trained pure-modular structure, but only a few other
structures are tested and it can not be claimed that it is the optimal one. Optimality also depends
on mode of training (sec. 3.4) and the learning algorithm (sec. 4.3) as the abilities of different
algorithms to find a particular solution are different.

MG(t341)A
LO(t-3 2y)O
MG (-2 apA (1 Network,
LO(t-24,)0 all 6 inputs)
MG(t-A1)A
LO(t-4,)0

(a) FULLY-CONNECTED (b) PURE-MODULAR (c) IMPURE-MODULAR (d) IMBALANCED-MODULAR

Figure 4. Four two-level RBF network structures representing four possible problem decompositions.

8 Khare et al.

(a) AVERAGING - OUTPUT (d) PRODUCT - OUTPUT

0.9 T T T T T T 0.8 T T T T
f netOut

T T
. netOut
target ~f-----

0.1 T S S S U 0 P S SIS V R
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

(b) MG - OUTPUT () MG - OUTPUT
1 T T

mg’l\)lodule(‘)ut -
" ingTargef -

. 1 —
mgModuleOut —=; A
//\naTarg

0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

() LO - OUTPUT (f) LO - OUTPUT

L L 0.1 L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500

Figure 5. Sub-task specialization in two-level modular RBF network: Top two plots (a) and (d) show the output
of the network against the target outputs of the Averaging and Product problems, respectively. Output of MG
module and target output for MG sub-task in (b) and (d) show one module has specialized in MG sub-task for the
Averaging and Product problems, respectively. Similarly, specialization to LO sub-task can be seen in (c) and (f)
for the two problems. X-axis on each plot represents 500 test data points.

4 Two-level RBF network for automatic problem decomposition

In the last section the decomposition needed for the problem is only the decomposition of features
into MG and LO subsets and the combination function is known. A more generic problem would
be one where the combination function is unknown.

4.1 Artificial problem: non-linear mizture of sub-tasks

One can construct a non-linear combination problem by using g as a product (g(MG(t), LO(t)) =
MG(t) - LO(t)), or g as a whole-squared (g(MG(t),LO(t)) = (MG(t) + LO(t))?) function in
sec. 3.1. These are the Product and the Whole-squared problems. The pure-modular solution to
these problems would be one with three modules. Two modules, My, and Mr o, that take inputs
only from one source or, in other words, predict the output for a single time series and a third
(M,) that predicts their combination function (Fig. 4(b)). For the MG-LO problem, in Table 1,
decomposition of features into Mackey-Glass and Lorenz is an example of parallel decomposition
and calculation of MG(t) and LO(t) as an intermediate step while predicting g is an example of
sequential decomposition (as discussed in Sec. 2.1).

4.2 Two-level RBF network architecture

The modular structure presented in sec. 3.5 can easily be extended to a Two-Level RBF Network
capable of performing this parallel and sequential decomposition. For generic non-linear problems
the outputs of the modules need to be combined non-linearly. For this purpose a RBF network as
the combining network (Fig. 3(c)) is used. The sub-task specialization (figs. 5(d), 5(e), 5(f)) is also

Multi-network evolutionary systems 9

observed for this pure-modular two-level RBF network. Again the learning curves of various struc-
tures are given in fig. 4 (but with a non-linear combining module) are compared. For incremental
learning pure-modular structure is observed to be better than other structures tested. This coupled
with the sub-task specialization, indicate that the structure is capable of performing the sequential
and parallel decompositions. There are two things that need be emphasized at this point, firstly
best structure for the problem depends on the learning algorithm used for training (sec. 4.3) and
secondly, in order for the modular structure to be beneficial all modules individually should be
able to approximate their sub-tasks. If they are unable to approximate the sub-tasks properly the
decomposition in terms of MG and LO modules would not be favoured.

4.3 Modularity vs. learning algorithm

In sec. 3.4, the effect of incremental and batch training on the learning capabilities of a fully-
connected structure is observed. With batch training the network does not learn the averaging
problem as well as it learns it with incremental training. Here different structures (fig 4) are com-
pared for their learning capabilities with other sophisticated batch learning algorithms. Improved
Resilient-Backpropagation (Rprop) (Igel and Hiisken 2003)), a quasi-Newton method with BFGS
update procedures (see Bishop 1996, chap. 7) and (1 + 1) Evolution Strategy as batch training
algorithms, alongside the steepest descent algorithms, are used. Table 2 shows these comparative

results.
Combination Function — | Averaging | Product | Whole-squared
Algorithms
Steepest Descent
(1) Incremental (y = 0.1) Pu Pu Pu
(2) Batch (p =0.1) Pu Fu Fu
IRPROP Pu Fu Fu
Quasi-Newton (BFGS) Pu Fu Fu
Evolution Strategy Pu Fu Fu

Table 2. After 100 epochs of training, multiple comparison of means using one-way anova results to determine which means
(for 30 runs) are significantly different. Pu indicates that pure-modular structure is better than others and Fu indicates
that either fully-connected structure is better than others or there is no single winner.

When the pure-modular structure is only required to perform parallel decomposition (Awveraging)
it easily achieves the performance of the pre-trained pure-modular (ideal) structure with all the
algorithms used and emerges as a winner throughout. When both parallel and sequential decom-
positions are required it is only able to do that with the incremental version of steepest descent
algorithm. Sec 5 presents a co-evolutionary model that can be used to evolve such a structure in
a favourable learning environment, i.e. using incremental steepest descent algorithm.

5 Co-evolutionary modules and modular neural network (CoMMoN) model

A two level co-evolutionary architecture (fig. 6), with the lower level (level 1) as a population of
modules and the higher level (level 2) as a population of complete systems made up of modules from
module population, is used. Within this general co-evolutionary framework, both the structure and
parameterization of the modules as well as the parameterization and structure of the systems can

10 Khare et al.

be evolved. Evolution at level 1 searches for good building blocks for the system and at level 2
it searches for good combinations of modules in level 1. This kind of co-evolutionary architecture
has been used before (Moriarty and Miikkulainen 1997, Garcia-Pedrajas et al. 2002, Khare et al.
2004) where neurons and artificial neural networks were used as modules and systems, respectively.
In Khare et al. (2005) it is extended up a level to use networks and their combinations (two-level
RBF networks) as the lower and the higher levels, respectively, for the non-linear combination
problems.

opopop

MODULE POPULATION SYSTEM POPULATION

Figure 6. Co-evolutionary Model for the non-linear combination problem. Each individual in module population
is a RBF network and each individual in system population contains a RBF network and pointers to two modules
in module population.

For the non-linear combination (Product) problems, modules are RBF networks (Fig. 6) differing
from each other in terms of the inputs that they get out of all six inputs from the combined problem,
hence each module can have between one and six inputs. Each system contains pointers to two
modules in module population and the output of the system is obtained with the help of combining
network, with two inputs and one output. Systems are trained using incremental steepest descent
learning, with random parameter initializations, in each generation and, are assigned with a fitness
value depending on their performance on validation data set. Modules derive their fitness from the
systems to which they contribute in the system population. They are to be judged on the basis
of their contribution towards the complete problem. Each module is assigned with a fitness value
equal to the number of appearances it made in any system in system population, during the last 10
generations. A detailed description of the co-evolutionary model, experimentation with Averaging
and Product problems and results can be found in Khare et al. (2005).

MG(t-3 A1) A MG(t-341)A
LO(t—3A2) O LO(t-3 AZ)O
MG(t-2 A1) A MG(t-2a)) A
LO(t-2 AZ)O LO(t-2 4,)O

MG(I-Al) A
LO(I-AZ) O LO(t- AZ) O
(a) INCOMPLETE PURE-MODULAR (b) INCOMPLETE IMBALANCED-MODULAR

Figure 7. Two solutions for the Product problem from the co-evolutionary model.

If a pure modular structure is advantageous over others then some of the modules in module
population will specialize in MG prediction task and some in LO prediction task or in other words
starting from a completely random configuration it will converge to a state where some modules
will take their inputs only from Mackey-Glass time-series and some from Lorenz time-series. The
difference in performance between this structure and others provides the co-evolutionary model

Multi-network evolutionary systems 11

with the selection pressure towards this structure (problem decomposition). Averaging problem
requires parallel (MG and LO modules) and Product problem requires both parallel and sequential
(first evaluation MG and LO modules and then the product module) decompositions. For the
Averaging problem the co-evolutionary model was able to discover the pure modular structure
and for the Product problem in addition to the pure-modular structure it also discovered two
other interesting structures (figs. 7(a) and 7(b)) very similar in performance to the pure-modular
structure. Structure in fig. 7(a) indicates that all three inputs are not needed to solve the problem.
Also, since it is known that for a time series prediction problem the last time step is the most
important one, the structure in Fig. 7(b) represents another good solution to the problem where
modules M; and M, are only focusing on the two most relevant inputs and the combination (M3)
is producing an ensemble effect of two very similar modules.

6 Conclusions

6.1 When is modularity useful?

Modularity has been recognised as one of the crucial aspects of development (embryogeny) and
evolution (Schlosser and Wagner 2005). Likewise, modularity should also play an important role in
designing artificial complex evolutionary and developmental systems. There has been some debate
about whether one should build modularity into such systems. There are instances where modu-
lar architectures are shown to outperform fully-connected architectures primarily by minimizing
modular interference. Arguments in favour often cite human brain (Rueckl et al. 1989, Ferdinando
et al. 2001), which is a result of evolution by natural selection and has functionally specialised
neural modules. Arguments against warn (Bullinaria 2002) that advantages of modularity are not
as straightforward and by using efficient learning algorithms and sophisticated cost functions it is
possible to deal with modular interference.

The answer to the question depends on how one defines being ‘useful.” Experiments presented
here indicate that the usefulness of modularity, if judged on the basis of the performance of the sys-
tem on the overall task, depends on the learning algorithm used (as observed in Bullinaria (2002))
and by using a more sophisticated learning algorithm it is possible to achieve similar, if not better,
performing non-modular structures as against modular structures. However, the performance mea-
sure is only tested in a static environment on a relatively low dimensional problem. Modularity in
neural networks is expected to be much more beneficial in dynamic environments (Hiisken et al.
2000), where it can help improve the speed of learning.

Modularity can also prove useful in evolving highly complex phenotypes. One to one mapping
of these to genotypes results in a very high dimensional genotypic search space, which makes
the problem intractable. In nature this problem is tackled through gene duplication (independent
specialization of duplicate genes), which corresponds to an inherent modularisation of the system
development. This concept has been used in artificial evolutionary systems for indirect genotype-
phenotype mapping (Gruau et al. 1996, Calabretta et al. 1998) to solve the intractability problem.
Further in evolution, the genetic representation encodes a growth process, the organization of
such a process inherently favours modular systems (Sendhoff and Kreutz 1999). Modularity might
be a consequence of this process. However, if one does not believe that this assumingly ‘simple’
consequence is an accident, then there must be a selective advantage in this process and in turn
the easy design of a modular system might be one such advantage.

12 REFERENCES

6.2 Modularity can be evolved

Given that modularity is beneficial for the overall performance of the system, in this case with
incremental steepest descent learning, it can be evolved. This work has presented a two-level
co-evolutionary model to design and optimize modular neural networks with sub-task specific
modules. The first level population consists of a pool of modules and the second level synthesizes
systems by drawing elements from this pool. Modules represent parts of the solution, which co-
operate with others in the module population to form a complete solution. Fitness of individuals
in the module population is determined by their contribution towards various systems in system
population. Evolutionary pressure to increase the overall fitness of the two populations provides
the needed stimulus for the emergence of the sub-task specific modules. With the help of artificial
tasks created by mixing two sub-tasks (MG and LO time series prediction) it is demonstrated that
if a particular task decomposition is better in terms of performance (mean-squared-error in this
case) on the overall task it can be evolved using this co-evolutionary model. This is also evident
from the emergence of some good decompositions which one would not think of while designing
such a modular system manually.

6.3 Future work directions

It would interesting to investigate the effects of modularity in a dynamic environment (sec. 6.1).
Within the static framework the co-evolutionary model has its share of limitations as well. Firstly,
the number of modules is fixed and is supplied to the model as a priori knowledge and secondly,
within these modules the structure of the module which combines the other modules to produce the
final output is also fixed. Ideally, and in line with the idea of co-adapting all the modules together,
the structure for this module (combining network) should also be evolved along with other modules.
Adaptation of the number of modules in a system can be achieved in two different ways. First
one is a stage-wise approach, where new modules are added or deleted simultaneously in all the
systems present in the population. This happens only when there is a stagnation in performance
of systems in system population. A more global approach is where systems with different number
of modules are present at the same time in the population. To overcome the second limitation
the model can be extended to co-evolve the modules for combining other modules alongside those
other modules in the module population. Finally, this generic model can be applied to a variety
of problems ranging from feature decomposition and feature selection in neural network ensembles
to problems which require pre-processing. Feature decomposition can be viewed as an example of
parallel decomposition and, feature selection and pre-processing can be viewed as an example of
first stages in a multi-stage sequential decomposition problem.

References

Y. S. Abu-Mostafa, “A method for learning from hints,” in S. J. Hanson, J. Cowan and C. L. Giles (eds.), Advances
in Neural Information Processing Systems, vol. 5, pp. 73-80, San Mateo, CA, Morgan Kaufmann, (1993).

C. M. Bishop, Neural Networks for Pattern Recognition, Oxford, UK: Oxford University Press, (1996).

G. Brown, “Diversity in Neural Network Ensembles,” Ph.D. thesis, School of Computer Science, University of
Birmingham, (2004).

J. A. Bullinaria, “To modularize or not to modularize?” in J. Bullinaria (ed.), Proceedings of the 2002 U.K. Workshop
on Computational Intelligence (UKCI-02), pp. 3-10, Birmingham, (2002).

R. Calabretta, S. Nolfi, D. Parisi and G. P. Wagner, “A case study of the evolution of modularity: Towards a bridge
between evolutionary biology, artificial life, neuro- and cognitive science,” in C. Adami, R. K. Belew, H. Kitano

REFERENCES 13

and C. E. Taylor (eds.), Proceedings of the Sizth International Conference on Artificial Life (ALIFE VI), pp.
275-284, University of California, Los Angeles, MIT Press, (1998).

A. D. Ferdinando, R. Calabretta and D. Parisi, “Evolving modular architectures for neural networks,” in R. M.
French and J. P. Sougné (eds.), Proceedings of the Sizth Neural Computation and Psychology Workshop, pp.
253-264, Liege, Belgium, Springer Verlag, (2001).

N. Garcia-Pedrajas, C. Hervas-Martinez and J. Munoz-Pérez, “Multi-objective cooperative coevolution of artificial
neural networks,” Neural Networks, 15, 1259-1278, (2002).

N. Garcia-Pedrajas, C. Hervas-Martinez and D. Ortiz-Boyer, “Cooperative coevolution of artificial neural network
ensembles for pattern classification,” IEEE Transactions on Evolutionary Computation, 9, 271-302, (2005).

F. Gruau, D. Whitley and L. Pyeatt, “A comparison between cellular encoding and direct encoding for genetic
neural networks,” in J. R. Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo (eds.), Genetic Programming 1996:
Proceedings of the First Annual Conference, pp. 81-89, Stanford University, CA, USA, MIT Press, (1996).

J. V. Hansen, “Combining predictors: Meta machine learning methods and bias/variance and ambiguity decompo-
sitions,” Ph.D. thesis, Aarhus Universitet, Datalogisk Institut, (2000).

T. Hrycej, Modular Learning in Neural Networks. A Modularized Appproach to Neural Network Classification, New
York: Wiley, (1992).

M. Hiisken, J. E. Gayko and B. Sendhoff, “Optimization for problem classes - neural networks that learn to learn,”
in X. Yao and D. F. Fogel (eds.), 2000 IEEE Symposium on Combinations of Evolutionary Computation and
Neural Networks (ECNN 2000), pp. 98-109, New York, IEEE Press, (2000).

M. Hiisken, C. Igel and M. Toussaint, “Task-dependent evolution of modularity in neural networks,” Connection
Science, 14, 219-229, (2002).

C. Igel and M. Hiisken, “Empirical Evaluation of the Improved Rprop Learning Algorithm,” Neurocomputing, 50,
105-123, (2003).

R. A. Jacobs, M. L. Jordan and A. G. Barto, “Task Decomposition Through Competition in a Modular Connectionist
Architecture: The What and Where Vision Tasks,” Cognitive Science, 15, 219-250, (1991a).

R. A. Jacobs, M. 1. Jordan, S. J. Nowlan and G. E. Hinton, “Adaptive Mixtures of Local Experts,” Neural Compu-
tation, 3, 79-87, (1991b).

R. E. Jenkins and B. P. Yuhas, “A simplified neural-network solution through problem decomposition: The caseof
the truck backer-upper,” Neural Computation, 4, 647-649, (1992).

M. I. Jordan and R. A. Jacobs, “Modular and hierarchical learning systems,” in M. Arbib (ed.), The Handbook of
Brain Theory and Neural Networks, pp. 579-582, Cambridge, MA, MIT Press, (1995).

V. R. Khare, X. Yao and B. Sendhoff, “Credit Assignment among Neurons in Co-evolving Populations,” in X. Y.
et al. (ed.), 8th International Conference on Parallel Problem Solving from Nature, PPSN VIII, pp. 882-891,
Birmingham, UK, Springer. Lecture Notes in Computer Science. Volume 3242, (September 2004).

V. R. Khare, X. Yao, B. Sendhoff, Y. Jin and H. Wersing, “Co-evolutionary Modular Neural Networks for Auto-
matic Problem Decomposition,” in (To appear) 2005 IEEE Congress on Evolutionary Computation, CEC 2005,
Edinburgh, UK, (September 2005).

R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artificial Intelligence, 97, 273-324, (1997).

G. G. Lendaris and K. Mathia, “On prestructuring anns using a priori knowledge,” in Proceedings of World Con-
ference on Neural Networks (WCNN’94), Earlbaum/INNS, (June 1994).

Y. Liao and J. Moody, “Constructing heterogeneous committees using input feature grouping: Application to eco-
nomic forecasting,” Advances in Neural Information Processing Systems, 12, 921-927, (1999).

Y. Liu, “Negative correlation learning and evolutionary neural network ensembles,” Ph.D. thesis, University College,
The University of New South Wales, Australian Defence Force Academy, Canberra, Australia, (1998).

E. N. Lorenz, “Deterministic nonperiodic flow,” Journal of atmospheric Science, 20, 130141, (1963).

B.-L. Lu and M. Ito, “Task decomposition and module combination based on class relations: A modular neural
network for pattern classification,” IEEE Transactions on Neural Networks, 10, 1244-1256, (1999).

M. C. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,” Science, 197, 287-289, (1977).

O. Maimon and L. Rokach, “Improving supervised learning by feature decomposition,” in Proceedings of the Second
International Symposium on Foundations of Information and Knowledge Systems, Lecture Notes in Computer
Science, pp. 178-196, springer, (2002).

D. E. Moriarty and R. Miikkulainen, “Forming Neural Networks Through Efficient and Adaptive Coevolution,”
Evolutionary Computation, 5, 373-399, (1997).

D. Opitz, “Feature selection for ensembles,” in Proceedings of the Sizteenth National Conference on Artificial
Intelligence (AAAI), pp. 379-384, (1999).

M. A. Potter and K. A. DeJong, “Cooperative Coevolution: An Architecture for Evolving Coadapted Subcompo-
nents,” Evolutionary Computation, 8, 1-29, (2000).

E. Ronco, H. Gollee and P. Gawthrop, “Modular neural networks and selfdecomposition,” Tech. Rep. CSC-96012,
Center for System and Control, University of Glasgow, Glasgow, UK, (1997).

J. G. Rueck]l, K. R. Cave and S. Kosslyn, “Why are “What” and “Where” Processed by Separate Cortical Visual
Systems? A Computational Investigation,” Journal of Cognitive Neuroscience, 1, 171-186, (1989).

G. Schlosser and G. P. Wagner (eds.), Modularity in Development and Evolution, The University of Chicago Press,
(2005).

B. Sendhoff and M. Kreutz, “Variable encoding of modular neural networks for time series prediction,” in V. Porto
(ed.), Congress on Evolutionary Computation CEC, pp. 259266, IEEE Press, (1999).

A. J. C. Sharkey (ed.), Combining Artificial Neural Nets: Ensemble and Modular Multi-Net Systems, Secaucus, NJ,
USA: Springer-Verlag New York, Inc., (1999).

14 REFERENCES

N. E. Sharkey, “Neural networks for coordination and control: The portability of experiential representations,”
Robotics and Autonomous Systems, 22, 345-359, (1997).

V. Sindhwani, S. Rakshit, D. Deodhare, D. Erdogmus, J. Principe and P. Niyogi, “Feature Selection in MLPs and
SVMs based on Maximum Output Information,” IEEE Transactions on Neural Networks, 15, 937-948, (July
2004).

H. Yang and J. Moody, “Feature selection based on joint mutual information,” in Advances in Intelligent Data Anal-
ysis (AIDA), Computational Intelligence Methods and Applications (CIMA), International Computer Science
Conventions, pp. 22-25, Rochester, New York, (June 1999).

C. H. Yong and R. Miikkulainen, “Cooperative Coevolution of Multi-Agent Systems,” Tech. Rep. AI01-287, De-
partment of computer Sciences, The University of Texas at Austin, Austin, TX 78712 USA, (2001).

M. Zaffalon and M. Hutter, “Robust feature selection by mutual information distributions,” in Proc. of the 18th
Conf. on Uncertainty in Artificial Intelligence, pp. 577-584, San Francisco, Morgan Kaufmann, (2002).

Vineet R. Khare received his B. Tech degree in Mechanical Engineering from IIT Kanpur,
India, in 2001 and his MSc degree in Natural Computation from The University of Birming-
ham, UK, in 2002. He is currently pursuing his doctoral studies in computer science at the
University of Birmingham, UK.

He is a member of the Natural Computation Research Group, School of Computer Science,
University of Birmingham. His research interests include co-evolution, neural network ensem-
bles, modular neural networks and multi-objective evolutionary algorithms.

Xin Yao is a professor of computer science from the University of Birmingham, UK. He
is also a Distinguished Visiting Professor of the University of Science and Technology of
China (USTC), Hefei, China, and a visiting professor of three other universities. He is an
IEEE Fellow, the Editor-in-Chief of IEEE Transactions on Evolutionary Computation, an
associate editor or an editorial board member of ten other journals, the editor of the World
Scientific book series on “Advances in Natural Computation”, and a guest editor of several
journal special issues. He won the 2001 IEEE Donald G. Fink prize paper award and several
other best paper awards. He has been invited to present 35 keynote or plenary speeches at
conferences worldwide. He has more than 200 research publications. His research interests
include evolutionary computation, neural network ensembles, global optimization, data min-
ing, computational time complexity of evolutionary algorithms, and real-world applications.
In addition to basic research, he works closely with many industrial partners on various real-world problems. He is
the Director of The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA)
(www.cercia.com), which is focused on applied research and knowledge transfer to the industry.

Dr. Yao received his BSc in 1982 (USTC), MSc in 1985 (North China Institute of Computing Technology) and
PhD in 1990 (USTC), all in computer science. He had worked in China and Australia before joining the University
of Birmingham in 1999 as a professor of computer science.

Bernhard Sendhoff studied physics at the Ruhr-Universitdt Bochum, Germany, and the
University of Sussex, U.K. In 1993, he received the Diploma degree and in 1998 the Doctorate
degree in physics from the Ruhr-Universitdt Bochum, Germany. He is currently Chief Tech-
nology Officer of the Honda Research Institute Europe GmbH, Offenbach/Main, Germany,
in addition to being Head of the Evolutionary and Learning Technology Group. From 1994
to 1999, he was a researcher and postdoctorate member of the Institute of Neuroinformatik,
Ruhr-Universitdt Bochum. His current research interests include the design and structure op-
timization of complex and adaptive systems based on neural networks, fuzzy systems, and
evolutionary algorithms. He has published over 70 scientific papers and holds several patents.
Dr. Sendhoff is a senior member of the IEEE and a member of the ENNS and the DPG.

