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Summary. Generating machine learning models is inherently a multi-objective op-
timization problem. Two most common objectives are accuracy and interpretability,
which are very likely conflicting with each other. While in most cases we are inter-
ested only in the model accuracy, interpretability of the model becomes the major
concern if the model is used for data mining or if the model is applied to critical
applications. In this chapter, we present a method for simultaneously generating
accurate and interpretable neural network models for classification using an evo-
lutionary multi-objective optimization algorithm. Lifetime learning is embedded to
fine-tune the weights in the evolution that mutates the structure and weights of
the neural networks. The efficiency of Baldwin effect and Lamarckian evolution are
compared. It is found that the Lamarckian evolution outperforms the Baldwin effect
in evolutionary multi-objective optimization of neural networks. Simulation results
on two benchmark problems demonstrate that the evolutionary multi-objective ap-
proach is able to generate both accurate and understandable neural network models,
which can be used for different purpose.

1 Introduction

Artificial neural networks are linear or nonlinear systems that encode infor-
mation with connections and units in a distributed manner, which are more
or less of biological plausibility. Over the past two decades, various artificial
neural networks have successfully been applied to solve a wide range of tasks,
such as regression and classification, among many others.

Researchers and practitioners are mainly concerned with the accuracy of
neural networks. In other words, neural networks should exhibit high pre-
diction or classification accuracy on both seen and unseen data. To improve
the accuracy of neural networks, many efficient learning algorithms have been
developed [8, 37].

Nevertheless, there are also many cases in which it becomes essential that
human users are able to understand the knowledge that the neural network
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has learned from the training data. However, conventional learning algorithms
do not take the interpretability of neural networks into account and thus the
knowledge acquired by neural networks is often not transparent to human
users. To address this problem, it is often necessary to extract symbolic or
fuzzy rules from trained neural networks [7, 15, 24, 25]. A common drawback
of most existing rule extraction method is that the rules are extracted after
the neural network has been trained, which incurs additional computational
costs.

This chapter presents a method for generating accurate and interpretable
neural models simultaneously using the multi-objective optimization ap-
proach [28]. A number of neural networks that concentrate on accuracy and
interpretability to a different degree will be generated using a multi-objective
evolutionary algorithm combined with life-time learning, where accuracy and
complexity serve as two conflicting objectives.

It has been shown that evolutionary multi-objective algorithms are well
suited for and very powerful in obtaining a set of Pareto-optimal solutions in
one single run of optimization [11, 12].

The idea of introducing Pareto-optimality to deal with multiple objectives
in constructing neural networks can be traced back to the middle of 1990’s [29].
In this work, two objectives, namely, the mean squared error and the number
of hidden neurons are considered. In another work [39], the error on training
data and the norm of the weights of neural networks are minimized.

The successful development in evolutionary multi-objective optimization [11,
12] has encouraged many researchers to address the conflicting, multiple ob-
jectives in machine learning using multi-objective evolutionary algorithms [2,
3, 4, 10, 16, 26, 27, 30, 32, 41]. Most of the work focuses on improving the ac-
curacy of a single or an ensemble of neural networks. Multi-objective approach
to support vector machines [21] and fuzzy systems [22, 40] has also been stud-
ied. Objectives in training neural networks include accuracy on training or test
data, complexity (number of hidden neurons, and number of connections, and
so on), diversity, and interpretability. It should be pointed out that a trade-off
between the accuracy on the training data and the accuracy on test data does
not necessarily result in a trade-off between accuracy and complexity.

Section 2 discusses different aspects in generating accurate and inter-
pretable neural networks. General model selection criteria in machine learning
are also briefly described. Section 3 shows that any formal neural network reg-
ularization methods can be treated as multi-objective optimization problems.
The details of the evolutionary multi-objective algorithm, together with the
life-time learning method will be provided in Section 4. The proposed method
is verified on two classification examples in Section 5, where a population of
Pareto-optimal neural networks are generated. By analyzing the Pareto front,
both accurate neural network (in the sense of approximation accuracy on test
data) and interpretable neural networks can be identified. A short summary
of the chapter is given in Section 5.
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2 Tradeoff between Accuracy and Interpretability

2.1 Accurate Neural Networks

Theoretically, feedforward neural networks with one hidden layer are universal
approximators, see e.g., [18]. However, a large number of hidden neurons is
required to approximate a given complex function to an arbitrary degree of
accuracy.

A problem in creating accurate neural networks is that a very good ap-
proximation of the training data can result in a poor approximation of unseen
data, which is known as overfitting. To avoid overfitting, it is necessary to
control the complexity of the neural network, which in turn will limit the ac-
curacy that can be achieved on the training data. Thus, when we talk about
accurate neural network models, we mean that the neural network should have
good accuracy on both training data and unseen test data.

2.2 Interpretability of Neural Networks

The knowledge acquired by neural networks is distributed on the weights and
connections and is therefore not easily understandable to human users. To im-
prove the interpretability of neural networks, the basic approach is to extract
symbolic or fuzzy rules from trained neural networks [7, 15, 24]. According to
[7], approaches to rule extraction from trained neural networks can be divided
into two main categories. The first category is known as decompositional ap-
proach, in which rules are extracted from individual neurons in the hidden and
output layer. In the second approach, the pedagogical approach, no analysis
of the trained neural network is undertaken and the neural network is treated
as a “black-box” that provides input-output data pairs for generating rules.

We believe the decompositional approach is more interesting, because the
resulting neural network architecture reflects the problem structure in a way,
particularly if structure optimization, structural regularization or pruning has
been performed during learning [23, 25, 36], which often reduces the complex-
ity of neural networks. Complexity reduction procedure prior to rule extrac-
tion is also termed skeletonization [14]. Decompositional approaches to rule
extraction from trained neural network can largely be divided into three steps:
neural network training, network skeletonization, and rule extraction [15].

2.3 Model Selection in Machine Learning

It is interesting to notice that we need to control the complexity of neural
networks properly, no matter when we want to generate accurate or inter-
pretable neural network models. However, the complexity for an accurate
model and an interpretable model is often different. Usually, the complexity
of an interpretable model is lower than an accurate model due to the limited
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cognitive capacity of human beings. Unfortunately, the complexity of inter-
pretable neural networks may be insufficient for neural networks to achieve
a good accuracy. Thus, a trade-off between accuracy and interpretability is
often unavoidable.

Model selection is an important topic in machine learning. Traditionally,
model selection criteria have been proposed for creating accurate models. The
task of model selection is to choose the best model in the sense of accuracy for
a set of given data, assuming that a number of models are available. Several
criteria have been proposed based on the Kullback-Leibler Information Crite-
rion [9]. The most popular criteria are Akaike’s Information Criterion (AIC)
and Bayesian Information Criterion (BIC). For example, model selection ac-
cording to the AIC is to minimize the following criterion:

AIC = −2 log(L(θ|y, g) + 2 K, (1)

where, L(θ|y, g) is the maximized likelihood for data y given a model g with
model parameter θ, K is the number of effective parameters of g.

The first term of Equation (1) reflects how good the model approximates
the data, while the second term is the complexity of the model. Usually,
the higher the model complexity is, the more accurate the approximation on
the training data will be. Obviously, a trade-off between accuracy and model
complexity has to be taken into account in model selection.

Model selection criteria have often been used to control the complexity
of models to a desired degree in model generation. This approach is usu-
ally known as regularization in the neural network community [8]. The main
purpose of neural network regularization is to improve the generalization ca-
pability of a neural network by control its complexity. By generalization, it is
meant that a trained neural network should perform well not only on training
data, but also on unseen data.

3 Multi-objective Optimization Approach to Complexity

Reduction

3.1 Neural Network Regularization

Neural network regularization can be realized by including an additional term
that reflects the model complexity in the cost function of the training algo-
rithm:

J = E + λΩ, (2)

where E is an error function, Ω is the regularization term representing the
complexity of the network model, and λ is a hyperparameter that controls the
strength of the regularization. The most common error function in training
or evolving neural networks is the mean squared error (MSE):
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E =
1

N

N
∑

i=1

(yd(i) − y(i))2, (3)

where N is the number of training samples, yd(i) is the desired output of the
i-th sample, and y(i) is the network output for the i-th sample. For the sake
of clarity, we assume that the neural network has only one output. Refer to
[8] for other error functions, such as the Minkowski error or cross-entropy.

Several measures have also been suggested for denoting the model complex-
ity Ω. A most popular regularization term is the squared sum of all weights
of the network:

Ω =
1

2

∑

k

w2
k, (4)

where k is an index summing up all weights. This regularization method has
been termed weight decay.

One weakness of the weight decay method is that it is not able to drive
small irrelevant weights to zero, when gradient-based learning algorithms are
employed, which may result in many small weights [37]. An alternative is to
replace the squared sum of the weights with the sum of absolute value of the
weights:

Ω =
∑

i

|wi|. (5)

It has been shown that this regularization term it is able to drive irrelevant
weights to zero [31].

Both regularization terms in equations (4) and (5) have also been studied
from the Bayesian learning point of view, which are known as the Gaussian
regularizer and the Laplace regularizer, respectively.

A more direct measure for model complexity of neural networks is the
number of weights contained in the neural network:

Ω =
∑

i

∑

j

cij , (6)

where cij equals 1 if there is connection from neuron j to neuron i, and 0 if
not. It should be noticed that the above complexity measure is not generally
applicable to gradient-based learning methods.

A comparison of the three regularization terms using multi-objective evo-
lutionary algorithms has been implemented [27]. Different to the conclusions
reported in [31] where the gradient-based learning method has been used, it
has been shown that regularization using the sum of squared weights is able to
change (reduce) the structure of neural networks as efficiently as using the sum
of absolute weights. Thus, no significant difference has been observed from the
Gaussian and Laplace regularizers when evolutionary algorithms are used for
regularization. In other words, the difference observed in [31] is mainly due to
the gradient learning algorithm, but not the regularizers themselves.
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3.2 Multi-objective Optimization Approach to Regularization

It is quite straightforward to notice that neural network regularization in
equation (2) can be reformulated as a bi-objective optimization problem:

min {f1, f2} (7)

f1 = E, (8)

f2 = Ω, (9)

where E is defined in equation (3), and Ω is one of the regularization terms
defined in equation (4), (5), or (6).

Note that regularization is traditionally formulated as a single objective
optimization problem as in Equation (2) rather than a multi-objective op-
timization problem as in equation (7). In our opinion, this tradition can be
mainly attributed to the fact that traditional gradient-based learning algo-
rithms are not able to solve multi-objective optimization problems.

3.3 Simultaneous Generation of Accurate and Interpretable

Models

If evolutionary algorithms are used to solve the multi-objective optimization
problem in Equation (7), multiple solutions with a spectrum of model com-
plexity can be obtained in a single optimization run. Neural network models
with a sufficient but not overly high complexity are expected to perform a
good approximation on both training and test data. Meanwhile, interpretable
symbolic rules can be extracted from those of a lower complexity [28].

An important issue is how to choose models that are of good accuracy. One
possibility is to employ model selection criteria we mentioned above, such as
AIC, BIC, cross-validation, and bootstrap.

With the Pareto front that trades off between training error and com-
plexity at hand, an interesting question arisen is that if it is possible to pick
out the accurate models without resorting to conventional model selection
criteria. In this chapter, a first step towards this direction is made by analyz-
ing the performance gain with respect to complexity increase of the obtained
Pareto-optimal solutions.

In order to generate interpretable neural networks, rules are extracted from
the simplest Pareto-optimal neural networks based on the decompositional
approach.

To illustrate the feasibility of the suggested idea, simulations are conducted
on two widely used benchmark problems, the breast cancer diagnosis data and
the iris data.
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Fig. 1. A connection matrix and the corresponding network structure.

4 Evolutionary Multi-objective Model Generation

4.1 Parameter and Structure Representation of the Network

A connection matrix and a weight matrix are employed to describe the struc-
ture and the weights of the neural networks. The connection matrix speci-
fies the structure of the network, whereas the weight matrix determines the
strength of each connection. Assume that a neural network consists of M
neurons in total, including the input and output neurons, then the size of the
connection matrix is M × (M + 1), where an element in the last column indi-
cates whether a neuron is connected to a bias value. In the matrix, if element
cij , i = 1, ..., M, j = 1, ..., M equals 1, it means that there is a connection be-
tween the i-th and j-th neuron and the signal flows from neuron j to neuron
i. If j = M +1, it indicates that there is a bias in the i-th neuron. Fig. 1 illus-
trates a connection matrix and the corresponding network structure. It can
be seen from the figure that the network has two input neurons, two hidden
neurons, and one output neuron. Besides, both hidden neurons have a bias.

The strength (weight) of the connections is defined in the weight matrix.
Accordingly, if the cij in the connection matrix equals zero, the corresponding
element in the weight matrix must be zero too.

4.2 Evolution and Life-time Learning

A genetic algorithm has been used for optimizing the structure and weights
of the neural networks. Binary coding is adopted representing the neural net-
work structure and real-valued coding for encoding the weights. Five genetic
operations have been introduced in the evolution of the neural networks, four
of which mutate the connection matrix (neural network structure) and one of
which mutates the weights. The four mutation operators are the insertion of
a hidden neuron, deletion of a hidden neuron, insertion of a connection and
deletion of a connection [19]. A Gaussian-type mutation is applied to mutate
the weight matrix. No crossover has been employed in this algorithm.
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After mutation, an improved version of the Rprop algorithm citeIgel00 has
been employed to train the weights. This can be seen as a kind of life-time
learning (the first objective only) within a generation. Both Baldwin effect
and Lamarckian evolution have been examined in this work, which will be
discussed further in Section 4.3.

The Rprop learning algorithm [34] is believed to be a fast and robust
learning algorithm. Let wij denotes the weight connecting neuron j and neuron
i, then the change of the weight (∆wij ) in each iteration is as follows:

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

· ∆
(t)
ij , (10)

where sign(·) is the sign function, ∆
(t)
ij ≥ 0 is the step-size, which is initialized

to ∆0 for all weights. The step-size for each weight is adjusted as follows:

∆
(t)
ij =















ξ+ · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

ξ− · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

, (11)

where 0 < ξ− < 1 < ξ+. To prevent the step-sizes from becoming too large or
too small, they are bounded by ∆min ≤ ∆ij ≤ ∆max.

One exception must be considered. After the weights are updated, it is
necessary to check if the partial derivative changes sign, which indicates that
the previous step might be too large and thus a minimum has been missed.
In this case, the previous weight change should be retracted:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0. (12)

Recall that if the weight change is retracted in the t-th iteration, the ∂E(t)/∂wij

should be set to 0.
In reference [20], it is argued that the condition for weight retraction in

equation (12) is not always reasonable. The weight change should be retracted
only if the partial derivative changes sign and if the approximation error
increases. Thus, the weight retraction condition in equation (12) is modified
as follows:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0 and E(t) > E(t−1). (13)

It has been shown on several benchmark problems in [20] that the modified
Rprop (termed as Rprop+ in [20]) exhibits consistently better performance
than the Rprop algorithm.
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4.3 Baldwin Effect and Lamarckian Evolution

When life-time learning is embedded in evolution, two strategies can often
be adopted. In the first approach, the fitness value of each individual will be
replaced with the new fitness resulted from learning. However, the allele of
the chromosome remains unchanged. In the second approach, both the fitness
and the allele are replaced with the new values found in the life-time learning.
These two strategies are known as the Baldwin effect and the Lamarkian
evolution, which are two terms borrowed from biological evolution [5, 6].

4.4 Elitist Non-dominated Sorting

In this work, the elitist non-dominated sorting method proposed in the NSGA-
II algorithm [13] has been adopted. Assume the population size is N . At
first, the offspring and the parent populations are combined. Then, a non-
domination rank and a local crowding distance are assigned to each individ-
ual in the combined population. In selection, all non-dominated individuals
(say there are N1 non-dominated solutions) in the combined population are
passed to the offspring population, and are removed from the combined pop-
ulation. Now the combined population has 2N − N1 individuals. If N1 < N ,
the non-dominated solutions in the current combined population (say there
are N2 non-dominated solutions) will be passed to the offspring population.
This procedure is repeated until the offspring population is filled. It could
happen that the number of non-dominated solutions in the current combined
population (Ni) is larger than the left slots (N − N1 − N2 − ... − Ni−1) in
the current offspring population. In this case, the N − N1 − N2 − ... − Ni−1

individuals with the largest crowding distance from the Ni non-dominated
individuals will be passed to the offspring generation.

5 Simulation Results

5.1 Benchmark Problems

To illustrate the feasibility of the idea of generating accurate and interpretable
models simultaneously using the evolutionary multi-objective optimization
approach, the breast cancer data and the iris data in the UCI repository of
machine learning database [33] are studied in this work. The breast cancer
data contains 699 examples, each of which has 9 inputs and 2 outputs. The
inputs are: clump thickness (x1), uniformity of cell size (x2), uniformity of cell
shape (x3), marginal adhesion (x4), single epithelial cell size (x5), bare nuclei
(x6), bland chromatin (x7), normal nucleoli (x8), and mitosis (x9). All inputs
are normalized, to be more exact, x1, ..., x9 ∈ {0.1, 0.2, ..., 0.8, 0.9, 1.0}. The
two outputs are complementary binary value, i.e., if the first output is 1, which
means “benign”, then the second output is 0. Otherwise, the first output is
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0, which means “malignant”, and the second output is 1. Therefore, only the
first output is considered in this work. The data samples are divided into two
groups: one training data set containing 599 samples and one test data set
containing 100 samples. The test data are unavailable to the algorithm during
the evolution.

The iris data has 4 attributes, namely, Sepal-length, Sepal-width, Petal-
length and Petal-width. The 150 data samples can be divided into 3 classes,
Iris-Setosa (class 1), Iris-Versicolor (class 2), and Iris-Virginica (class 3), each
class having 50 samples. In this work, 40 data samples for each class are used
for training and the rest 10 data samples are for test.

5.2 Experimental Setup

The population size is 100 and the optimization is run for 200 generations.
One of the five mutation operations is randomly selected and performed on
each individual. The standard deviation of the Gaussian mutations applied
on the weight matrix is set to 0.05. The weights of the network are initialized
randomly in the interval of [−0.2, 0.2]. In the Rprop+ algorithm, the step-sizes
are initialized to 0.0125 and bounded between [0, 50] during the adaptation,
and ξ− = 0.2, ξ+ = 1.2, which are the default values recommended in [20]
and 50 iterations are implemented in each local search.

Although a non-layered neural network can be generated using the coding
scheme described in Section 3, only feedforward networks with one hidden
layer are generated in this research. The maximum number of hidden nodes
is set to 10. The hidden neurons are nonlinear and the output neurons are
linear. The activation function used for the hidden neurons is as follows,

g(z) =
x

1 + |x|
, (14)

which is illustrated in Fig. 2.

5.3 Comparison of Baldwin Effect and Lamarckian Evolution

To compare the performance of the Baldwin effect and Lamarkian evolution in
the context of evolutionary multi-objective optimization of neural networks,
the Pareto fronts achieved using the the two strategies are plotted in Fig. 3
for the breast cancer data and in Fig. 4 for the iris data.

From these results, it can be seen that the solution set from the Lamarkian
evolution shows clearly better performance in all aspects including closeness,
distribution and spread. The spread of the Pareto-optimal solutions is par-
ticularly poor for the breast cancer data, which might indicate that efficient
life-time learning becomes more important for harder learning tasks, recalling
that the breast cancer data has more input attributes and more data samples.
Thus, only the results using the Lamarckian evolution will be considered in
the following sections.
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Fig. 2. The activation function of the hidden nodes.
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Fig. 3. Pareto fronts obtained using the Baldwin effect (circles) and Lamarckian
evolution (diamonds) for the breast cancer data.

5.4 Rule Extraction from Simple Neural Networks

To obtain interpretable neural networks, we attempt to extract symbolic rules
from simple neural networks. For the breast cancer data, the simplest Pareto-
optimal neural network has only 4 connections: 1 input node, one hidden node
and 2 biases, see Fig 5(a). The mean squared error (MSE) of the network on
training and test data are 0.0546 and 0.0324, respectively.
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Fig. 4. Pareto fronts obtained using the Baldwin effect (circles) and Lamarckian
evolution (diamonds) for the iris data.

x2
8.21 − 0.68

−2.33 0.57

1.0 1.0

y

Fig. 5. The simplest neural network for the breast cancer data.

Assuming that a case can be decided to be “malignant” if y < 0.25, and
“benign” if y > 0.75, We can then derive that if x2 > 0.4, which means that
x2 ≥ 0.5, then “malignant” and “benign” if x2 < 0.22, i.e., then x2 ≤ 0.2.

From such a simple network, the following two symbol-type rules can be
extracted (denoted as MOO NN1):

R1: If x2 (uniformity) ≥ 0.5, then malignant; (15)

R2: If x2 (uniformity) ≤ 0.2, then benign. (16)

Based on these two simple rules, only 2 out of 100 test samples will be
misclassified, and 4 of them cannot be decided with a predicted value of 0.49,
which is very ambiguous. The prediction results on the test data are presented
in Fig 5(b).
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Fig. 6. The next simplest neural network on the breast cancer data.

Now let us look at the second simplest network, which has 6 connections
in total. The connection and weights of the network are given in Fig. 6(a),
and the prediction results are provided in Fig. 6(b). The MSE of the network
on training and test data are 0.0312 and 0.0203, respectively.

In this network, x2, x4 and x6 are present. If the same assumptions are
used in deciding whether a case is benign or malignant, then we could extract
the following rules: (denoted as MOO NN2)

R1: If x2 (uniformity) ≥ 0.6 or

x6 (bare nuclei) ≥ 0.9 or

x2 (uniformity) ≥ 0.5 ∧ x6 (bare nuclei) ≥ 0.2 or

x2 (uniformity) ≥ 0.4 ∧ x6 (bare nuclei) ≥ 0.4 or

x2 (uniformity) ≥ 0.3 ∧ x6 (bare nuclei) ≥ 0.5 or

x2 (uniformity) ≥ 0.2 ∧ x6 (bare nuclei) ≥ 0.7, then malignant;

(17)

R2: If x2 (uniformity) ≤ 0.1 ∧ x6 (bare nuclei) ≤ 0.4 or

x2 (uniformity) ≤ 0.2 ∧ x6 (bare nuclei) ≤ 0.2, then benign; (18)

Compared to the simplest network, with the introduction of two additional
features x6 and x4 (although the influence of x4 is too small to be reflected
in the rules), the number of cases that are misclassified has been reduced to
1, whereas the number of cases on which no decision can be made remains to
be 4, although the ambiguity of the decision for the four cases did decrease.

Similar analysis has been done on the Iris data. The simplest neural net-
work has 8 connections, where only attribute 1 has been selected, refer to
Fig. 7.

From the neural network structure, it can be seen that the network can
only distinguish the class Iris-Setosa (class 3) from others, but is still too
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Fig. 7. The simplest neural network for the iris data.

simple to distinguish between Iris-Versicolor and Iris-Virginica. One rule can
be extracted from the neural network:

R1: If x3(Petal-Length) < 2.2, then Setosa; (19)

The second simple Pareto-optimal neural network has 13 connections with
2 inputs, see Fig. 8. Though the structure is still very simple, the network
is able to separate three classes correctly. By analyzing the structure of the
neural network, the following three rules can be extracted:

R1:If x3(Petal-Length) ≤ 2.2, x4(Petal-Width) < 1.0, then Setosa; (20)

R2:If x3(Petal-Length) > 2.2, x4(Petal-Width) < 1.4, then Versicolor;(21)

R3:If x4(Petal-Width) > 1.8, then Virginica; (22)

From the above analyses, we have been successful in extracting under-
standable symbolic rules from the simple neural networks generated using the
evolutionary multi-objective algorithm. Thus, we demonstrate that the idea
to generate interpretable neural networks by reducing the complexity of the
neural networks is feasible.

5.5 Identifying Accurate Neural Network Models

One advantage of evolutionary multi-objective optimization approach to neu-
ral network generation is that a number of neural networks with a spectrum
of complexity can be obtained in one single run. With these neural networks
that trade off between training error and model complexity, we hope that
we can identify those networks that are most likely to perform well both on
training data and unseen test data.
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Fig. 8. The second simplest neural network for the iris data.

Objective 1

Objective 2

Knee

Fig. 9. Knee of a Pareto front.

In multi-objective optimization, the “knee” of a Pareto front is often con-
sidered to be interesting, as illustrated in Fig. 9. The reason is that for the
solutions at the knee, a small improvement in one objective will cause large de-
terioration in the other objective. However, such a knee is not always obvious
in some applications. Thus, it is important to define a quantitative measure
for the knee according to the problem at hand. In [17], some interesting work
has been presented to determine the number of clusters by exploit the Pareto
front in multi-objective data clustering.
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Fig. 10. Normalized performance gain for the breast cancer data.

If we take a closer look at the Pareto fronts that we obtained for the two
benchmark problems, we notice that when the model complexity increases, the
accuracy on training data also increases. However, the amplitude in accuracy
increase is not always the same when the number of connections increases.
Thus, we introduce the concept of “normalized performance gain (NPG)”,
which is defined as follows:

NPG =
MSEi − MSEj

Ni − Nj

, (23)

where MSEi, MSEj , Ni, Nj are the MSE on training data, and the number
of connections of the i-th and j-th Pareto optimal solutions.

The normalized performance gain on the breast cancer data is illustrated
in Fig. 10. We notice that the largest NPG is achieved when the number of
connections is increased from 4 to 6 and from 6 to 7. After that, the NPG
decreases almost to zero when the number of connections is increased to 14,
though there is some small fluctuations. Thus, we denote the Pareto optimal
solution with 7 connections as the knee of the Pareto front, see Fig 11. To
investigate if there is any correlation between the knee point and the approx-
imation error on test data, we examine the test error of the neighboring five
Pareto-optimal solutions right to the knee, which are circled in Fig.11. Very
interestingly, we can see from Fig 15 that all the five solutions belong to the
cluster that has the smallest error on test data.

We do the same analysis on the iris data. The NPG on the iris data is
presented in Fig. 13. Similarly, the NPG is large when the number of connec-
tions increases from 8 to 13 and from 13 to 17. After that, the NPG decreases
dramatically. Thus, the solution with 14 connections is considered as the knee
of the Pareto front, see Fig. 14.
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Fig. 11. Complexity versus training error for the breast cancer data. The five
solutions right to the knee are circled.
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Fig. 12. Complexity versus test error for the breast cancer data. The circled
solutions are those neighbor solutions right to the knee on the Pareto front.

However, when we look at the test error of all the solutions, we find that no
observable overfitting has occurred with the increase in complexity. Actually,
the test error shows very similar behavior to the training data with respect
to the increase in complexity. In fact, the test errors are even smaller than
the training error, refer to Fig. 15. If we take a look at the training and test
data as shown in Fig. 16, this turns out to be natural, because none of the
test samples (denoted by filled shapes) are located in the overlapping part of
the different classes.
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Fig. 14. Complexity versus training error for the iris data.

6 Conclusions

Generating accurate and interpretable neural networks simultaneously is very
attractive in many applications. This work presents a method for achieving
this goal using an evolutionary multi-objective algorithm. The accuracy on
the training data and the number of connections of the neural network are
taken as the two objectives in optimization. We believe the complexity is
a very important objective for learning models in that both generalization
performance and interpretability are closely related to the complexity.

By analyzing the achieved Pareto-optimal solutions that trade off between
training accuracy and complexity, we are able to choose neural networks with a
simpler structure for extracting interpretable symbolic rules. In the meantime,
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Fig. 15. Complexity versus training and test error for the iris data. The training
errors are denoted by diamonds and the test error by circles.
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Fig. 16. Location of the training and test samples in the x3 − x4 space of the iris
data. Training and test data of class 1 are denoted by triangles and filled triangles,
class 2 by diamonds and filled, and class 3 by triangles down and filled triangles
down, respectively.

neural networks that have good accuracy on unseen data can also be picked
out by choosing those solutions in the neighborhood of the knee of the Pareto
front, if overfitting occurs.

Much work remains to be done in the future. First it is interesting to
compare our method with model selection criteria such as cross-validation or
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bootstrap methods. Second, this method should be verified on more bench-
mark problems.
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