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Abstract— We present a sound localization system that ope-
rates in real-time, calculates three binaural cues (IED, IID,
and ITD) and integrates them in a biologically inspired fashion
to a combined localization estimation. Position information is
furthermore integrated over frequency channels and time. The
localization system controls a head motor to fovealize on and
track the dominant sound source. Due to an integrated noise-
reduction module the system shows robust localization capabi-
lities even in noisy conditions. Real-time performance is gained
by multi-threaded parallel operation across different machines
using a timestamp-based synchronization scheme to compensate
for processing delays.
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I. I NTRODUCTION

Sound localization in a real-world environment (see e.g. [1]–
[4]) is a hard problem, requiring an integration of different
modules into a system that runs in real-time. A number of
approaches (e.g. [2], [5]) use special sensing or computing
hardware to solve this problem. In contrast to this we present
an architecture that uses a humanoid head with just two
microphones and reaches real-time capabilities using standard
computing hardware. Robustness regarding noise and echoes
is achieved by using measurement window selection (detailed
in [6]), a static noise reduction system and integration over
frequency channels, localization cues and time.

There are three cues for the relative position of a sound
source: the Interaural Time Difference (ITD ), the Interaural
Intensity Difference (IID ) and finally the Interaural Envelope
Difference (IED ). Each of these cues has its drawbacks:
ITD only works for the lower frequency range, becoming
ambiguous beyond a critical frequency of around 1kHz (de-
pending on head dimensions), IID is strong only for the
higher frequencies and very much dependent on the hardware
characteristics of head and microphones, and IED is generally
considered to be quite unreliable on its own [7]. In addition
both echoes and additional noise sources degrade system
operation. Sound localization therefore requires an integration
of information from different sources at the correct time. As a
target application we set a scenario with a varying number of
auditory sources (e.g. humans) in a normal (noisy and echoic)

room. People are supposed to address the system through calls,
claps, whispers or any other sound. The system should turn
immediately to the position of the currently strongest sound
source, while ignoring static noise sources like air condition
or fan noise. The design of our system was constrained by
the need to add more functionality in the future, therefore
requiring a flexible software architecture and general-purpose
hardware. While [6] details the cue computation and window
selection algorithm used in our system, this paper focuses
on three different aspects: integrating localization information,
stationary noise reduction, and the software skeleton around
which our system is built.

A. Related Approaches

Robot sound localization has been presented before, ho-
wever with a different hardware and software structure and
a different focus. Many authors used microphone arrays
[5], [8] to get a satisfactory performance under real-world
conditions. Our system uses only two microphones mounted
on a humanoid head. We also use conventional computing
hardware (single CPU systems or SMP machines) instead of
dedicated hardware. Despite of this we are capable of using
the computationally more expensive Gammatone filters [9]
which are considered to be a good approximation of processing
in the human cochlea and provide a high resolution in time
and frequency. We are using zero-crossings [10] to measure
ITD and IED. Also inspired from the biological example
is the integration of cues in a neuron-like manner. Another
biologically-inspired approach has been presented in [11],
which focuses on a probabilistic estimation of sound source
position, but not on the capability to work in a real-world
scenario. Therefore, our system is special in the sense that
it provides a biologically-inspired binaural sound localization
with the necessary robustness to operate in real-world envi-
ronments.

II. SYSTEM ARCHITECTURE

The system consists of different processing modules, which
can be grouped into sound recording, preprocessing, cue ex-



traction, cue mapping, integration and neck control elements.
For a view of the complete graph see Fig. 1. In addition, there
are modules for synchronization, latency compensation and
downsampling (note that for reasons of clarity synchronization
modules are not shown in the graph).

Fig. 1. The complete system graph. For a description see text.

A. Preprocessing

The system records sound data from two microphones
mounted on a humanoid head, and then uses a Gammatone
filterbank (GFB) [9], [12], [13] with Equivalent-Rectangular
Bandwidth (ERB) to get frequency-specific signal responses
g(c, k) (channelc, time indexk). In our experiments we used
between 30 and 180 different frequency channels in the range
of 100 Hz to 10 kHz and a sampling rate of 24 kHz. We then
compute the signal’s envelopee(c, k) through rectification and
frequency-specific low pass filtering. We apply a high-pass
filtering with a cut-off frequency of 500 Hz on the envelope
signal. The resulting signal will be denotedh(c, k). Based on
the envelope signal we also computel(c, k) using a low-pass
filter with a cut-off frequency of 40 Hz in order to remove
pitch-based amplitude modulations of unresolved harmonics.
The noise reduction operates on the low-pass filtered signal
l(c, k), producing the noise-reduced signals(c, k).

B. Localization Cues

Both ITD and IED are based on comparing consecutive
zero-crossings from left and right microphones. The compa-
rison is done for every zero-crossing point of one side with
the previous and the next zero-crossing on the contra-lateral
side. IED is based on zero-crossings taken from the high-pass
signal h(c, k), while ITD uses Gammatone filterbank output
g(c, k). IID computation is based on a comparison of left and
right noise free signals (nl(c, k) andnr(c, k)):

IID(c, k) =
sl(c, k) − sr(c, k)

max(sl(c, k), sr(c, k))
. (1)

Cues are computed continuously but measured only at certain
times, where echoes have a limited effect. How these measure-
ment windows are computed is described in detail in [6]. The

basic approach is a maximum search near signal onsets with
an inhibition of trailing maxima. This approach is inspiredby
the precedence-effect in hearing psychology.

C. Cue Mapping

After computing the three interaural cues we integrate them
in a biologically-inspired manner and map them as a cue-triple
to different positions along the horizontal (azimuth) axis. For
every positioni and frequency channelc we define a node with
a receptive fieldRFi,c = ( IEDi,c, IIDi,c, ITDi,c, σIED

i,c , σIID
i,c ,

σITD
i,c , wIED

i,c , wIID
i,c , wITD

i,c ) within cue space. Receptive field
center, width, and confidence, respectively, are defined using
the calibration procedure described below. For a cue-triple
(IED,IID,ITD) measured at time indexk we compute the
responseMc(i, k) of every nodei by calculating the distance
of the cue-triple to the receptive field centers of the nodes:

Mc(i, k) = wIED
i,c · exp

(
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i,c · exp

(

−
(ITD−ITDi,c)
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(σIT D
i,c

)2

)

(4)

Responses are additive for each cue, therefore missing or
inaccurate cues will not impair localization if the remaining
cues are working properly. After node responses have been
computed, the nodes with the highest responses are taken
as candidate positions for the measured sound event. With
Mmax

c (k) = max
i

(Mc(i, k)) as the maximum response over

all nodes we compute the normalized responseNc(i, k):

Nc(i, k) = exp

(

Mc(i, k) − Mmax
c (k)

σN

)

, (5)
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Fig. 2. Localization responses for individual cues and combined over all
channels(M ). The final normalized responsesN are shown in black.

with σN = 0.1 as a normalization constant. This operation is
a weak winner-take-all strategy leaving only a few strongly
activated nodes. We set all responses below a threshold level
ΘS = 0.1 to zero. As a result we get one or a few candidate
nodes (= positions) for every recorded sound event. Cue
ambiguities, e.g. as known for ITD in the high-frequency
range, can be resolved via the integration of the other cues or
represented as multiple location candidates if a disambiguation
is not possible. Fig. 2 shows an example for a single auditory
event (measured IED, IID, ITD triple). The graph plots the



localization responses for the three cues individually andas
a combination (M ), plus the normalized responsesN . Cue
ambiguities are reduced to the two most likely candidate
positions in this example.

D. Spectral Subtraction

An important requirement for our system is that it can
suppress localization of permanently active noise sourcessuch
as fan noise and exclude the interfering source characteristics
from the computation of the target cues. In order to achieve
this we use the biologically plausible approach of subtracting
the estimated mean value of the fan noise envelopenl/r(c, k)
from the overall left (l) and right (r) envelopell/r(c, k), i.e.

sl/r(c, k) = ll/r(c, k) − E
{

nl/r(c, k)
}

. (6)

This approach, which is known asSpectral Subtractionwhen
applied in the Short Time Fourier Transform domain [14],
proves to be beneficial for cue computation as it removes a
strong bias. For example instead of the incorrect IID value

sl(c, k) − sr(c, k) + nl(c, k) − nr(c, k)

max(sl(c, k) + nl(c, k), sr(c, k) + nr(c, k))
(7)

the system now calculates

sl(c, k) − sr(c, k) + ñl(c, k) − ñr(c, k)

max(sl(c, k) + ñl(c, k), sr(c, k) + ñr(c, k))
(8)

which increases the robustness to noise as the noise mean is
removed and in the case of completely deterministic signals
ideal compensation for the noise is achieved. The termñl/r

contains the residual zero mean noise because a statistical
description is more realistic.

The remaining problem of noise level estimation is solved
on-line by exploiting the fact that the mean noise value does
not change quickly in time and that it can be observed solely
in speech / sound event pauses. Figure 3 depicts the situation.
At the beginning of the recording the microphones pick up
fan noise only, then a speaker is active and speech components
superimpose the noise level. However it is important to see that
pauses occur naturally in speech and the sound level drops to
the noise level in normal conversations. From this observation
we can derive our algorithm which is a simplified filter bank
adapted version of Cohen’sMinimum Controlled Recursive
Averaging[15], [16].

First, we choose a first order recursive filter structure for
estimation of the mean noise envelope (note that for nota-
tional convenience we dropped the channel indexc and the
distinction between left and right),

n̂(k) = γ(p(k))n̂(k − 1) + (1 − γ(p(k))) · l(k) , (9)

and make the filter’s smoothing constantγ dependent on the
speech probabilityp(k) in channelc at timek:

γ (p(k)) = γmin + (1 − γmin) · p(k) (10)

In times of high speech probabilityp(k) ≈ 1 the estimation
of the mean value freezes (γ = 1) while in pauses a minimum

valueγmin is applied which is a compromise between adap-
tation speed and error variance. Too high values lead to slow
convergence whereas small values lead to fluctuations in the
level.

In the next step we need to approximate the speech pro-
bability p(k). The trick here is to use the running minimum
lmin(k) of a smoothed version of the signal envelope

ls(k) = γs · ls(k − 1) + (1 − γs) · l(k)

lmin(k) = min{ls(m) | k − L + 1 < m < k}

as a noise baseline. Against this baseline we can then test

Λ(k) = ls(k)/lmin(k)

and decide for speech ifΛ(k) is above a certain threshold
valueTspeech. With this hard indication of speech, i.e.p(k) ∈

{0, 1}, we then control the averaging. However, this Voice
Activity Detection scheme has the drawback that it can not
respond fast to noise level changes as a long minimum filter
lengthL is required to prevent increases during speech [15].
Therefore, a second iteration of minimum filtering is applied
where detected speech segments of the first iteration are
excluded, for details see [15]. The threshold valuesTspeech
are obtained from simulations with fan noise only and result
in different values for each channel as the bandwidth increases
along the frequency axis.

0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2
x 10

−3

Time [s]

E
nv

el
op

e

Channel 40 − Center Frequency f
c
 = 712 Hz

 

 

noise estimate n(40,k)

l(40,k)
l
s
(40,k)

l
min

(40,k)

Fig. 3. Estimated mean noise level (blue) in channel 40. Notethat the system
is able to adapt in the short speech pause at 0.09 sec.

The complete behavior of the algorithm can be seen in figure
3. At the beginning the noise level (blue line) adjusts starting
from near zero to the current level at the beginning and stops
the estimation as the first spoken words arrive. Later on it
resumes operation in the small pause and stops again.

Due to the noise reduction, the IID computation, which
turned out to the best single cue for our scenarios, is far less
affected by static noise than in competing approaches making
the noise reduction an important requirement for operationin
noisy conditions. Furthermore, the noise estimation also plays
an important role for measuring ITD and IED values as a
robust adapting noise level baseline is needed to reject cue
measurement points for pure noise signals [6].



E. Calibration

The relation between cue values and positions is learned
offline in a special calibration scenario where we present a
number of auditory stimuli from a fixed speaker and record
from our microphones while the head is moved to different
defined positions. The recorded sound files are sent through
the architecture to measure the cues. For the cues measured at
one position we compute the mean cue values (the receptive
field) plus the variance of measurements. The latter is used to
assign confidence valuesw (see above) as is described in [6].
The receptive field widthσ is set per channel depending on
the range of measured cue values.

F. Integration

EvidenceE(i, k) for different positions (nodes) is computed
by integrating normalized responsesNc(i, k) over time and all
frequency channels. First we integrate over time in a neuron-
like fashion:

Ec(i, k) = α ∗ Ec(i, k − 1) + Nc(i, k). (11)

The constantα is given by α = exp
(

−∆k
τ

)

, with an
integration time constantτ = 100 ms. Then we sum node
responses over all channels:

E(i, k) =
∑

c

Ec(i, k) (12)

Performance can be improved considerably by smoothing the
evidences over time and positions. We employed a Gaussian
smoothing filter with a width of 400 ms in time and 10 degrees
in positions. The result is a smoother evidence which results in
better localization performance due to the integration of more
localization cues for every time step and position.

G. Stream Tracking

Following the evidence computation auditory objects have
to be identified and tracked over time. This process is called
Auditory Streaming. For the scenario we have chosen, it
suffices to track only a single auditory stream. To start a stream
the maximum evidenceEmaxhas to exceed a thresholdTstart.
As long as the evidence stays aboveTstop the stream is kept
active. The position of a streamxs is initialized as:

xs(k) = P (imax= arg max
i

(E(i, k))), (13)

where x = P (i) is the function that maps node indices to
positions. Positions are updated as long as the stream is active
by first computing the positionxl(k) of the local evidence
maximum. The new maximum is searched for only in the local
surrounding of the current stream position (∆i = 20 degrees
in system) to stabilize the search process. Then we update the
stream’s position by:

xs(k) = β · xs(k − 1) + (1 − β) · xl(k) . (14)

The constantβ is a smoothing parameter. In case the global
evidence maximum exceeds the local maximum by a certain

factor Tswitch (Emax > Tswitch · El), the stream’s position
is instantly switched to the position of the global maximum.
If Emax falls belowTstop the stream is closed.

H. Head Control

An active stream will trigger a head movement to face the
perceived location of the sound sourcexs(k). If no streams
are active, the head is kept still. Head movements and sound
localization are synchronized in a way to ensure that noise
generated by ego motion is suppressed. This is done by setting
all Nc(i, k) to zero from the time on a new head motor
command has been sent up to the point where the head motion
is finished. Being able to localize sound sources during head
saccades is still an open problem under investigation.

III. I MPLEMENTATION

We implement different processing elements (e.g. filter-
banks, noise reduction, temporal integration) in separatemo-
dules. The total number is more than 100 in our application.
Modules are written in a standardized component model
(BBCM [17], [18]). Therefore integration of modules from
different researchers was comparatively easy and straightfor-
ward. The linking of modules on the software side is done
within a real-time middleware and integration (called RTBOS
[17], [18]) that interconnects modules flexibly and also allows
the distribution of processing over several threads, CPUs and
even computers. Network communication is done via TCP/IP.
As a result we can flexibly integrate a large number of
modules (see also [19] for another large-scale system usingthe
BBCM/RTBOS system) for sequential and parallel execution.
To speed-up computation we also make use of Intel’s IPP
library.

A. Recording Hardware

Two DPA 4060-BM omni-directional microphones and a
MAudio Delta1010 recording system are used to record sound
data with a sampling rate of 24 kHz. The microphones are
mounted on different humanoid heads at the approximate
positions of human ears. Heads are filled with foam or other
damping material but are otherwise basically empty. The head
is mounted on a neck element (Amtec Robotics PowerCube
PW070), connected to a PC via CANbus. The head can turn
360 degrees at high speed, which is unfortunately accompanied
by substantial noise (due to the close proximity of the neck
to the microphones).

B. Timestamp-based Synchronization

To optimize processing speed vs. communication overhead
sound data is analyzed in blocks of 50 ms length (1200
samples). As different parts of the system can run in parallel,
a synchronization of data blocks is necessary. We use a
timestamp generated in the sound recording module that is
transferred by RTBOS throughout the system to align blocks
from different processing streams and to detect holes in the
processing chain. Our system can handle missing blocks and
will even show an acceptable performance in case of frequent



discontinuities (see Fig. 4). These are normally the resultof
either network communication delays or high computational
load for some CPUs.

C. Latency Compensation and Subsampling

We also compensate processing latencies that result from
using different filters for cues and measurement windows: ITD
computation works on the direct output of the Gammatone
filter bank while the measurement window is calculated on
a low-pass-filtered envelope signal. Filters introduce a group
delay which leads to different latencies. These can sum up to
624 samples (26 ms). If this difference is not compensated,
cues will be measured outside the optimal window (see
[6]) leading to severe impairments in echoic environments.
Our architecture can handle arbitrary latency differencesand
compensates them when needed by delaying the faster signal.
The compensation is done per channel so that the low-latency
high-frequency channels are not blocked by the high-latency
low frequency channels. This operation is executed together
with the timestamp synchronization, as depicted in Fig. 4.

As can be seen in the system graph (Fig. 1), signals are
downsampled at different stages of processing. The subsamp-
ling factor used is 24, which means that a large share of the
system effectively runs at 1 kHz only. This results in a speed
up of approximately 2 for the overall system.

Fig. 4. The operation of the synchronization module for the example of two
inputs. Blocks are stored internally until all inputs with acommon timestamp
have been received. A missing block in at least one input willtrigger a warning
message and the data in this block will be skipped. After synchronization,
latencies are compensated by delaying the faster signal (here input 2).

IV. RESULTS

Our architecture was tested on-line in two different rooms.
Both rooms were noisy and echoic (750 ms and 330 ms re-
verberation time), but the system showed a robust localization
in all cases. In an on-line scenario several people attracted the
system’s attention by calling it or making different sounds.
Even in this very noisy environment the system found the
correct sound source using at most three, but normally only
a single head movement. Localization performance was still
good when music was played and very strong background
noise (Asimo fan noise) was added. More information on these
scenarios and some results can be found in [6]. The system
also shows a quick response, we measured a response latency
of less than 400 ms (between signal onset and generation of a

head movement command). Now we present some results of
our system working offline on pre-recorded soundfiles.

A. Low-noise Scenario

The system runs on-line either stand-alone on a single
machine using 60 channels and with an additional 4-CPU-
SMP with up to 180 channels of the GFB. We investigated
the effect of increasing the number of frequency channels by
testing the performance of the system on a database recorded
with one of our heads. Sound files were recorded at 1 degree
increments. We used 20 files for training and 15 files (short
human (English) utterances) for testing. Data was recordedin a
normal echoic room (7x15 m, reverberation time 750 ms) with
a modest level of background noise (air condition, computer
fan). The SNR of test files was around 10-15 dB. Microphones
were mounted on a humanoid dummy head. We evaluated the
mean localization error̄ǫ (in degrees) over all test files and
positions, the maximal deviation from the true target over all
files ǫmax, and the mean localization error per channelǭc (in
degrees). The range of source positions is 180 degrees (-90 to
+ 90 degrees). The results are given in the following table:

channels ǭ ǫmax ǭc

30 2.8° 46° 17.8°
60 2.3° 42° 17.2°
90 2.2° 43° 17.0°
120 2.2° 42° 16.9°
180 2.2° 39° 16.8°

This experiment shows that there is an improvement in
performance with increasing number of channels, but only
marginally when going beyond 60 channels. As can be seen
the system has a very high precision for high SNR speech
signals in normal environments. Outliers are very rare (more
than 99% of all sound sources are localized within 10 degrees
of the correct position) and in almost 20% of all cases the
localization had a precision of 1 degree. The mean error per
channel, though, is considerably higher, clearly demonstrating
the need to integrate over channels.

B. Test-case results under different noise and echo conditions

We also performed tests on data recorded from Asimo’s
head microphones (data kindly provided by K. Nakadai) in
two different rooms (one anechoic and a normal office room
with considerable echoes). We also compared the situation
where Asimo is turned off (SNR of ca. 12 dB) and turned
on (approximately 6 dB SNR ). The system was tested with
a fixed setting (60 channels of the Gammatone filterbank, 24
kHz sampling rate) to investigate the effect of noise and echo.
Data was recorded at positions spaced 10 degrees apart from
-90 to +90 degrees. We got the mean integrated localization
error / mean channel-wise localization error for the different
scenarios as follows:

ǭ / ǭc Asimo off Asimo on
anechoic 0.39°/ 15.36° 2.46°/ 39.77°
echoic 1.96°/ 28.26° 1.51°/ 35.71°



As can be seen the performance in a noise- and echo-free
environment is almost perfect. Echoes reduce performance not
as much as Asimo’s strong fan noise. The combination of
echo and noise is less severe than noise alone in this case
which is due to a few outliers in the data. Fig. 5 shows
the mean localization error per channel for the four different
scenarios. The highest frequency channels are generally poorly
performing and especially channels between 600 Hz and 3
kHz (channel number 18 to 40) are strongly affected by
noise. Despite this increase in mean channel error, the overall
performance is still very good, considering the high noise
level.
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Fig. 5. Mean localization error per channel for different noise and echo
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V. SUMMARY AND CONCLUSION

We have presented a system for real-time, real-world
sound source localization using standard hardware and a
two-microphone set-up on a humanoid head. The system
shows a robust performance even under noisy and echoic
conditions. This robustness is achieved by taking inspiration
from biological auditory processing systems. Firstly, we are
using a biologically-inspired integration of cues. Secondly
we model the precedence effect for echo-cancellation [6]
which improved the stability and reliability of cue computation
considerably. Finally, we are using the Gammatone-Filterbank
instead of FFT and zero-crossings instead of correlation-based
approaches for IED and ITD computation. It is therefore
demonstrated that biologically inspired real-time sound loca-
lization in an every-day environment can be achieved with
conventional hardware and using just two microphones on a
humanoid head.

The current architecture will be the basis for the integration
of additional auditory processing capabilities, like e.g.pitch
tracking [20], which will require a larger number of frequency
channels and more processing modules to operate. The pre-
sented architecture has the capacity to be expanded to meet
these requirements
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