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Abstract. We present a biologically motivated system for object recog-
nition that is capable of online learning of several objects based on inter-
action with a human teacher. The training is unconstrained in the sense
that arbitrary objects can be freely presented in front of a stereo camera
system and labeled by speech input. The architecture unites biological
principles such as appearance-based representation in topographical fea-
ture detection hierarchies and context-driven transfer between different
levels of object memory. The learning is fully online and thus avoids an
artificial separation of the interaction into training and test phases.

1 Introduction

The capacity for learning and robust recognition of numerous objects makes the
human visual system superior to all currently existing technical object recogni-
tion approaches. One aspect of this is the capability of quickly analyzing and
remembering completely unknown new objects. In this contribution we refer to
this ability as online learning, which is of high relevance for cognitive robotics and
computer vision. A typical application domain we are heading for is to increase
the knowledge of an assistive robot in a changing and unpredictable environ-
ment [1]. The capability of learning online constitutes a fundamental difference
to offline learning, since it enables an interactive process between teacher and
learner. The immediate feedback about the current learning state can induce an
instanteneous and active learning process that reduces the amount of necessary
training data and allows an iterative error correction based on user feedback.

To realize such learning, we present a system that combines a flexible neural
object recognition architecture with a biologically motivated attention system
for gaze control, and a speech understanding and synthesis system for intuitive
interaction. The target is to obtain a flexible object representation system that
is capable of high-performance appearance-based object recognition of complex
objects together with a particularly rapid online learning scheme that can be
carried out by cooperative training with a human teacher. A high level of inter-
activity is achieved by avoiding an artificial separation into training and testing
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phase, which is still the state-of-the-art for most current trainable object recog-
nition architectures. We do this by using an incremental learning approach that
consists of a two-stage memory architecture of a context-dependent working or
sensory memory and a persistent object memory that can also be trained online.

The learning is unconstrained in the sense that we do not impose any precon-
ditions on the environment, except that objects are presented to the system by
showing them by hand. To allow online learning in this difficult scenario, we use
a dynamic segmentation approach that performs a fast figure-ground separation
based on an initial stereo-based coarse object hypothesis. The object recognition
architecture is motivated from the ventral pathway of the human visual cortex
and can be applied to arbitrary complex-shaped objects. Fast online learning
can be achieved with this architecture, because object-specific learning occurs
only on the highest levels of the hierarchical feature detection stages. The lower
stages of the model correspond to earlier and intermediate feature detection
stages in the visual cortex and are trained by sparse coding learning rules [2].
This results in a particularly robust appearance-based representation of objects
using a consistent library of typical local shape elements.

In the following we review related work in Section 2 and give an overview
over our system in Section 3. In Section 4 we describe the components of the
visual memory in more detail, show results on the performance and learning
behaviour in Section 5 and give a short final discussion in Section 6.

2 Related Work

Compared to the large body of work on offline training of model-free object
recognition architectures, only few work has been done on online learning for
complex-shaped objects. The main problems are poor generalization due to the
inherent high dimensionality of visual stimuli, and the difficulty to achieve in-
cremental online learning with standard classifier architectures like multi layer
perceptrons or support vector machines.

To make online learning feasible, the complexity of the sensorial input has
been reduced to simple blob-like stimuli [3], for which only positions are tracked.
Based on the positions, interactive and online learning of behavior patterns can
be performed. A slightly more complex representation was used by Garcia et
al. [4], who have applied the coupling of an attention system using features like
color, motion, and disparity with a fast learning of visual structure for simple
colored geometrical shapes like balls, pyramids, and cubes.

Histogram-based methods are another common approach to tackle the prob-
lem of high dimensionality of visual object representations. Steels & Kaplan [5]
have studied the dynamics of learning shared object concepts based on color
histograms in an interaction scenario with a dog robot. Another model of word
acquisition that is based on multidimensional receptive field histograms for shape
representation and color histograms was proposed by Roy & Pentland [6]. The
learning proceeds online by using a short-term memory for identifying reoccur-
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ring pairs of acoustic and visual sensory data, that are then passed to a long-term
representation of extracted audiovisual objects.

Arsenio [7] has investigated a developmental learning approach for humanoid
robots based on an interactive object segmentation model that can use both ex-
ternal movements of objects by a human and internally generated movements of
objects by a robot manipulator. Using a combination of tracking and segmen-
tation algorithms the system is capable of online learning of a few objects by
storing them using a geometric hashing representation.

An interesting approach to supervised online learning for object recognition
was proposed by Bekel et al. [8]. Their VPL classifier consists of three major
stages. The two feature extraction stages are based on vector quantization and
a local PCA measurement. The final stage is a supervised classifier using a local
linear map architecture. The image acquisition of new object views is triggered
by pointing gestures on a table, and is followed by a short training phase, which
take some minutes. The main drawback is the lack of an incremental learning
mechanism to avoid the complete retraining of the architecture.

Kirstein et al. [9] have presented an online learning architecture that is op-
erated in a more constrained scenario with defined black background to ease
the figure-ground segmentation. Their focus was the transfer from a short-term
to more condensed long-term memory representation using incremental vector
quantization methods.

3 System Overview

The visual input is a left and right image pair, obtained from a stereo cam-
era head mounted on a pan-tilt unit. The gaze control of the head is driven by
an independent circuit that combines the cues of motion, color, and depth for
attention-driven selection of the gaze direction. We use the concept of periper-
sonal space [10] to establish shared attention on a presented object during learn-
ing. This means that the system will focus its attention on an object that is
presented within a particular short-distance range interval that roughly corre-
sponds to the biological concept of the manipulation space around the body.
If nothing is present within this space, the cues of motion and color/intensity
determine the gaze selection of the system (see [10] for more details).

The online learning system is working with the camera output that is gener-
ated according to the gaze selection of the independent attention system. Based
on the current stereo view pair, a depth map is computed that is aligned with
the left camera image. The left camera image and the depth map are passed to
the peripersonal blob detection stage that generates a square region of interest
(ROI), based on the estimated distance of the current object hypothesis. By
estimating the distance, the apparent size of objects within the ROI can be nor-
malized with remaining uncertainties due to the limited precision of the depth
computation. The square ROI with distance dependent size in the original image
is scaled to a normalized size of 144x144 pixels.



4

Image acquisition

Stereo depth

Gaze control
Attention−based

ASDF
Segmentation

Shape Feature Maps RGB

Speech
Input

Output

Sensory
Memory Memory

Object

Temporal
Integration

Object hypothesis
ROI: Peripersonal

Fig. 1. Overview over the visual online learning architecture. See text for explanation.

The normalized ROI around the object hypothesis together with the cor-
responding part of the depth map is passed to the figure-ground segmentation
stage of processing, the adaptive scene-dependent filters (ASDF) [11]. The ASDF
method makes no strong assumptions on the objects like e.g. being single-colored.
Based on the depth map, a relevance map is obtained that covers the object only
coarsely with considerable overlap to the background. For each pixel location in
the ROI, a local feature vector is computed based on RGB color channels, depth,
and pixel position. Using a dynamic vector quantization model first an unsuper-
vised segmentation is computed using the local feature vectors in the ROI as
input ensemble and then the input image is segmented according to the map-
ping to the Voronoi cells of the found vector quantization centers. Due to a
sufficient number of centers, we obtain an oversegmentation and can then se-
lect object segments as those that are sufficiently contained within the relevance
map (see [11] for more details). The method obtains an intrinsic stability by
continuously iterating the vector quantization based on state on the previous
frame. We additionally use skin color detection to remove parts of the hand that
hold the object. The output of the ASDF stage is a mask describing the current
figure-ground hypothesis on the ROI.

The selected ROI and the segmentation mask from the ASDF stage are fed
into the model of the ventral visual visual pathway of Wersing & Körner [2] to
obtain a complex feature map representation that is based on 50 shape and 3
color feature maps. The color channels are just downsampled images in the three
RGB channels. The output is a high-dimensional view-based representation of
the input object, that is then passed to the further object memory representation
stages for learning and recognition.

To allow a particularly interactive online learning we use a memory concept
that is separated into a sensory memory carrying the currently attended ob-
ject and a persistent memory that carries consolidated and consistently labeled
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object view representations. As long as an object is presented within the periper-
sonal space and has not been labeled or confirmed, the obtained feature map
representations of views are stored incrementally within the sensory memory. At
the same time, all newly appearing views are being classified using the persis-
tent object memory. If the human teacher remains silent, then the system will
either generate a class hypothesis, or reject the presented object as unknown
and verbalize this using the speech output module. The human teacher can con-
firm the hypothesis or make a new suggestion on the correct object label. As
soon as feedback by the teacher is available, the learning architecture starts the
concurrent transfer from the sensory memory buffer into the consolidated ob-
ject memory. This extends over the whole history of collected views during the
presentation phase and also proceeds with all future views, as long as the object
is still present in the peripersonal space. The labeling of the current object can
be done by the teacher at any time during the dialogue and is not restricted to
being a reaction on a class hypothesis of the recognition system. The concept of
a context-dependent memory buffer makes a separation into training and testing
phases unnecessary. The transfer from the sensory to the object memory is suf-
ficiently fast to remain unnoticed to the human trainer and the learning success
can be immediately tested, allowing for a real online learning interaction.

The speech input and output is very important for the intuitive training
interaction with the system. We use a system with a headset, which is the current
state-of-the-art for speaker-independent recognition. The vocabulary of object
classes is specified beforehand, to be able to label arbitrary objects we also use
wildcard labels such as “object one”, “object two” etc.

4 Object Memory Representation

In the following we describe in more detail the main components of the object
memory and recognition system. For a more detailed description of the attention,
gaze selection and stereo processing system we refer the reader to [10].

4.1 Hierarchical Feature Processing

The output of the ASDF figure-ground segmentation stage is a mask signal that
is combined with the candidate ROI (of size 144x144 pixels) and fed into the
hierarchical model of the ventral visual pathway developed by Wersing & Körner
[2]. To obtain invariance against rotations in the image plane, which is normally
quite a challenge for appearance-based recognition, we determine the principal
axes of the figure-ground mask and rotate the ROI and mask aligned with the
horizontal direction. This normalization introduces much better robustness for
the recognition of elongated objects like e.g. bottles.

The rotation-normalized ROI is processed using a hierarchy of feature detec-
tion and pooling stages that achieves a robust appearance-based representation
of an object view as a collection of several sparsely activated feature map rep-
resentations (see Fig. 1). In the system that we consider here, we use 50 shape
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features, that are sensitive to particular local structural elements in the image,
and the three RGB channels. The 50 shape feature maps are represented at
a resolution of 18x18, due to the spatial convergence in the hierarchy. As was
shown before, the output of the feature representation of the complex feature
layer can be used for robust object recognition that is competitive with other
state-of-the-art models, when offline training is being used [2].

The efficiency of the representation is achieved by sparse coding that en-
sures that object views are represented using only sparse activation in the high-
dimensional feature space. To represent also coarse color information, the 3 RGB
channels are used as a downsampled ROI at the same resolution of 18x18 as the
shape features. Although the complete dimensionality of a single view represen-
tation is thus (50+3)x18x18=17172, the effective dimensionality is much smaller,
due to the sparsity of the representation vector and the restriction of activity
around the figure-ground mask. Nevertheless it is a key feature of our biologically
motivated visual processing model that robustness, generalization and speed of
learning is not achieved by a dimension reduction as in most other current online
learning models [3–8]. The key element is a transformation of the input into a
sparse robust feature map representation that captures locally invariant relevant
structures of the objects.

4.2 Sensory and Object Memory

The object representation system for online learning and recognition is separated
into two subsystems: A sensory memory for temporarily remembering the cur-
rently attend object within focus and a persistent object memory that integrates
all object knowledge incrementally over time.

The high-dimensional output vectors of the feature hierarchy are continu-
ously stored within the sensory memory. The task of this memory is to capture
all current views of an object to be able to use them for transfer to the object
memory when a speech label has been given. This means that also those views
can be used for training that were recorded before a labeling of the object was
obtained from the human trainer, relaxing the constraints on the training di-
alogue. The sensory memory is realized as an incremental vector quantization
model, where new representatives are added, when they are sufficiently dissim-
ilar to all current entries in the sensory memory. The similarity is measured
based on Euclidean distance in the feature map vector space. Due to the spar-
sity of the feature map vectors this similarity computation can be very efficiently
implemented [9].

When a labeling signal arrives, because the human teacher has labeled an
object or has confirmed a hypothesis generated from the object memory, the in-
formation accumulated in the sensory memory is transferred to the object mem-
ory in real time. Here we use the same incremental vector quantization model.
If there are already some views available in the object memory, the comparison
is performed against the already existing representation. The main advantage of
the template-based representation is that training is fully incremental and non-
destructive with regard to previous information. This representation can be later
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Fig. 2. Presentation scenario for our online learning architecture (a), and average recog-
nition performance versus training time (b) for training the 10th object after 9 were
already trained, with and without segmentation and temporal integration.(c) demon-
strates the typical rotation variation that is applied during all experiments.

condensed and consolidated using additional learning mechanisms that operate
on a slower time scale [9].

Every arriving view is being classified based on the information in the object
memory using a nearest-neighbour classifier for the labeled representatives. Since
the system is running at a sufficient frame rate, we can use a temporal integration
over different views to improve the classification results considerably. Our results
have shown that a majority voting scheme is particularly efficient in combination
with the nearest-neighbour classification approach in the object memory, since
it allows to use more ensemble information of the exemplar-based representation
stored in memory. In our experiments we use a history of 10 classifications, and
assign the output class that achieves most single classification votes. An object
is rejected as unknown if this majority vote is less than 50% or if the mean
similarity to the majority representatives, measured in the Euclidean feature
space, is below a fixed threshold.

5 Results

The complete system has been realized on a cluster of one dual processor PC
for gaze control and image capture, one desktop PC running the speech recog-
nition and synthesis system, and one dual processor PC performing all visual
processing and online learning after the gaze selection. The recognition system
is running at a frame rate of roughly 6Hz, which enables interaction and online
learning with direct feedback on the learning result. A generic training scenario
is shown in Fig. 2a, with typical ROI views of objects that are being processed.
During all experiments the objects were freely rotated by hand to obtain a strong
appearance variation.
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In Fig.2b we show plots of the recognition performance versus training time
during online learning. For this evaluation we train nine objects from a training
set of 10 objects (upper row in Fig. 3) that was generated by storing 300 views
per object from a typical training session. Then the tenth object is trained in
steps of 10 images (1.67 sec in Fig. 2c) and a testing step is performed. The test
is done by classifying a completely disjoint test set of 300 views per object that
was collected using a different training person. Test performance is measured
over all 300 test images of the currently trained object giving the classification
rate as percentage of correctly recognized objects at this point of online learning.
Then training proceeds until all 300 training images are used. The plots shown
in Fig. 2b show the resulting classification rate, averaged over an ensemble of
experiments, where each of the 10 objects was one time the final object.

We compare in Fig. 2b the conditions of either using ASDF segmentation or
omitting it (and thus also rotation normalization), and with or without tempo-
ral integration with voting over a past history of 10 classifications. The results
demonstrate that due to the cluttered background, training with the ASDF
speeds up learning considerably and gives a significantly higher recognition rate.
Using the temporal integration can additionally reduce the error from 15% after
50 seconds of training to 4% error. If we remove the color features and use only
the shape representation in combination with ASDF and temporal integration
we obtain a residual error of 10%, underlining the independent quality of the
shape representation.

We visualize the actual time course of the different memory types during a
training session of 18 objects in Figure 3. The plot displays the number of used
representatives in the sensory and object memories together with the training
dialogue (abbreviated, the actual dialogue is a little more elaborate). Starting
from a completely empty object memory, we first perform a training of 10 objects.
In this first phase the system first consistently matches the cola can to the
previously trained “sun cream” object, and thus classifies the cola can initially
as “sun cream”, which is then corrected by the teacher. Due to the similar red-
white color and shape composition the “mini car” is also first confused with
the cola can, and is corrected. Due to the shape similarity the green bottle is
first labeled as blue bottle, which is a reasonable error, as long as no correction
signal is given. After the feedback by the teacher, the system has learned to
discriminate the first 10 objects after 5 minutes of training from many different
viewing angles, which is evaluated directly afterwards. In the second training
phase 8 objects are added. The initial confusion occurs quite reasonably between
cola can and a yellow can, another red car and the mini car, a new blue mug and
the first blueishly patterned mug, and a new blue rubber duck and the initial
yellow one. After the initial training in the second phase, the garlic press and
police car object have to be additionally refined. After that second retraining
phase, all 18 objects are classified from any reasonable viewing angle without
further errors.

An important property of the system is that learning occurs most of the
time and is not separated into artificial training and testing phases. This can
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Fig. 3. Temporal learning dynamics during a training session for 18 objects. The plot
shows the number of representatives for the sensory memory (“sawtooth” at bottom
of plot) and representatives for each object in the object memory over time. The
corresponding training dialogue is stated synchronously at the top. The top row states
the given labels by the human trainer, while the bottom row gives the classification
results of the system, before a human labeling is given. Errors of the system are printed
in bold italics. From 0 to 310s the first 10 objects are trained, the recognition of these
10 objects is evaluated from 320s to 420s without any errors. From 420s to 730s another
8 objects are added, and all 18 objects are checked after 730s without errors.

be seen from the time course in Fig. 3, where during the first evaluation of the
first 10 objects between 320s and 420s the object memory is still expanding, due
to the confirmation signals of the human teacher on the system classifications.
The same applies to the second evaluation and error correction phase between
640s and 850s. The complete duration of the session until no further recognition
errors are encountered is about 12 minutes. This highlights the gain in learning
speed that can be achieved due to the active error correction process during
learning. When the object memory is enlarged over time, we encounter a slight
slowing down of the system frame rate from 6Hz to approximately 4Hz, since
the comparison to the memory takes longer.



10

6 Discussion

We have presented an architecture for online learning of arbitrary objects that
uses aspects of biologically motivated visual processing in a very efficient and
robust way. To our knowledge it is the first system that focuses on real online
learning of several objects of arbitrary color and shape and their later robust
recognition in an unconstrained scenario. The representation is based on a neu-
ral model of the ventral pathway and combines a large storage capacity with
robustness in difficult real-world scenarios. Due to the integration of speech di-
alogue with a context-dependent memory architecture we achieve a high level
of interactivity that makes the training procedure simple and intuitive. We con-
sider this as an important step towards cognitive vision systems for robotics and
man-machine interfaces that gain considerable flexibility by learning.
Acknowledgments: We thank J. Eggert, A. Ceravola, and M. Stein for provid-
ing the processing system infrastructure. We thank F. Joublin and H. Janssen for
their contributions to the setup of the speech recognition and synthesis system.
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