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Abstract

We propose a design of a self-motivational
system which would be suitable for both adap-
tation and development scenarios. The core
features of our design are: the usage of gen-
eral rewards and building up on a reactive
system. As a test case for our design we
use the human-robot interaction via shared
attention. We show that with addition of a
general-purpose self-motivational mechanism
the system can aquire a behavior for distin-
guishing between objects presented by a hu-
man and those that just happen to be close
to the robot.

1 Introduction

The role of developmental robotics is two-fold. On
the one hand it strives for the implementation of gen-
eral principles of child development and the valida-
tion of psychological theories on robots. On the other
hand it aims at increasing the autonomy and adap-
tivity of robots. However, it remains difficult to com-
bine both issues in a really synergetic fashion. The
general developmental principles are applied mostly
to open-ended scenarios but less to scenarios where
a robot has to learn a particular skill for a particular
task. In this article we discuss the question if and
how a general intrinsic developmental algorithm can
be used for adaptation towards specific strategies.

We discuss first the difference between specific and
unspecific rewards. Subsequently we argue that ex-
ploration should not be an independent module, but
a parameter of the behavior in order to allow for
adaptation.

Finally the theoretical ideas are tested in an ex-
periment on a robot head which can move in pan
and tilt directions and is equipped with stereo-vision
cameras. The context of the experiment is human-
robot interaction for object recognition and learn-
ing. We start with reactive gaze selection used
in (Goerick et al., 2005) as innate behavior of the
robot. The extension of the reactive control by a

self-motivation system allows for the adaptation of
the innate behavior.

2 Specific Versus Unspecific Reward

The developmental approach supposes that the in-
trinsic developmental system consists at least of
a self-motivation or value system, an abstraction
system and an anticipation system, as well as in-
nate behaviors, see e.g. (Lungarella et al., 2003),
(Blank et al., 2005). The design of these parts con-
straints what the system can learn and what the re-
sulting behavior will be.

In the literature several proposals for the design
of reward for motivation have been made vary-
ing from very sensor-close and specific, e.g. red
objects, (Sporns and Alexander, 2002), to very
sensor-far and unspecific, e.g. learning progress,
(Oudeyer and Kaplan, 2006), novelty and pre-
dictability, (Marshall et al., 2004).

The specific rewards are easy to implement, but if
they are employed for signal-symbol mapping then
they can lead to symbol grounding problems. For
example in (Sawada et al., 2004) a “social reward” is
given if the human comes closer to the robot. How-
ever, in a natural environment the human could come
closer to the robot because the human is angry and
not because he wants to reward the robot.

An additional issue of specific reward is its local-
ity. It rewards the end-point without rewarding the
way to it. Thus it can not help to find the strategy.
For example associating red objects with reward does
not help to grasp a red object from an inaccessible
position.

In contrast, unspecific rewards cover large parts
of the behavior space. These rewards can provide
the evaluation of unknown situations not forseen
by the designer. Such an evaluation can consider-
ably speed up the exploration compared to a pure
random search. In this paper we use some simple
heuristics for deciding on the direction of the explo-
ration. An alternative would be to let the explo-
ration strategy emerge from the progress evaluation



(Oudeyer and Kaplan, 2006). The results of this ap-
proach confirm that specific behaviors can emerge
from unspecific reward.

Except for qualitative reviews of approaches in de-
velopmental robotics, e.g. (Lungarella et al., 2003),
there exists yet no well-established methodology for
comparing different designs. We propose a simple
empirical consideration which can help to design a
motivational system.

It makes no difference whether one pre-designs
some reactive, innate, task-specific solution or a self-
motivation system if the reward chosen for motiva-
tion occurs only in the situations which correspond
to this very task-specific solution.

In other words: through the introduction of the
self-motivation system one can gain more adaptivity
only if the reward used in this system covers a larger
sub-space in the behavior space than the subspace
covered by the reactive behavior.

From the point of view of adaptation it means that
the system can adapt if it can go back to the general
evaluation (general description of “good” and “bad”)
once the specific evaluation (specific strategy) turns
out to be wrong.

Consequently for our goal of increasing adaptivity
of a reactive system unspecific, general, grounded re-
wards are a better design choice. This is validated
by an experiment described in section 4. It does not
necessarily mean that there is no need for specific re-
wards, it only means that they are probably playing
a different role, e.g. for conditioning.

The choice of reward signals or the evaluation met-
ric is one important design issue. Another impor-
tant issue is the design of interfaces from the self-
motivation or value system to the rest of the system.

3 Integration of Self-Motivation into
the Reactive Behavior System

The architecture of an autonomous robot can use
self-motivation on different levels: on the level of
emotional evaluation, goal selection, or action se-
lection. Following the developmental approach, we
start with the minimal architecture without an ex-
plicit representation of goals. We are interested in
the question how self-motivation can be used for the
exploration of new behaviors on a lower level, be-
cause the adaptation also presupposes an exploration
strategy for finding an appropriate behavior.

The exploration is often decoupled from the rest
of the system both from architectural and func-
tional points of view. Sometimes it is considered
as a default behavior and is implemented as an
isolated module, e.g. (Sawada et al., 2004). Some-
times it acts on the level of the action selection, but
independently, e.g. (Oudeyer and Kaplan, 2006),
(Singh et al., 2004).

We propose that the amount of exploration is a pa-
rameter of the system which describes the possible
deviation from the known behavior. The advantage
of this approach is the natural transition from task
execution to exploration. Both in case of failure and
in case of absence of the specific task we gradually
increase the allowed deviation from the known be-
havior. This means that we can keep the stable reac-
tive architecture, do the monitoring in parallel and
do the exploration by influencing the main sensor-
actuator loop. As we start without goal representa-
tions, it is the self-motivational system that controls
the allowed deviation from the known behavior. If
the needs/motivations exceed the “viability ranges”
a higher deviation is allowed.

This approach requires that behaviors and behav-
ior strategies are described by continuous param-
eters with accessible neighborhoods. In this case
we have a second advantage: the exploration can
profit from the known behaviors. Think for ex-
ample about discovering an asking gesture in the
proximity of a pointing gesture as proposed in
(Kaplan and Hafner, 2004). The system needs to
learn primarily to recognize the right context, to
slightly modify pointing and to combine it with vo-
calization. In contrast, the random rediscovery of
coordination between hand, object and vocalization
is very costly.

4 Experiment: Discover Appropriate
Interaction Behavior

The goal in the following experiment is to establish a
robust human-robot interaction for online learning of
object recognition. The system should make a visual
search between all interesting (regarding color, con-
trast or structure) locations, but fixate the location
of an object shown to the system by a user.

4.1 Innate Behavior: Reactive Gaze Selec-
tion and Peripersonal Space

In (Goerick et al., 2005) this task was solved with
the help of reactive behaviors and the concept of
peripersonal space, which is defined as a particular
volume in front of the body. The objects inside of
this volume are perceived differently than distant ob-
jects. In this way shared attention between the sys-
tem and the human can be created on a very low
level without any psychological concepts.

The system selects its gaze direction according to a
saliency map in the spirit of (Itti et al., 1998). This
map is a weighted sum of visual saliency, disparity
saliency selection, and motion saliency selection as
illustrated by the upper part of Figure 2. The vi-
sual saliency computation provides a map of “inter-
esting” (regarding color, contrast, or structure) lo-
cations. The disparity saliency selection computes



Figure 1: Schematic visualization of the peripersonal

space approximation. The inner volume represents the

peripersonal space, the outer volume the complete field

of view with the sensitivity to visual and motion cues.

disparities and selects the closest region within a spe-
cific distance range and angle of view. This simple
mechanism represents a first approximation to the
concept of the peripersonal space (see Figure 1). The
motion saliency selection produces a map with an ac-
tivation corresponding to the largest connected area
of motion within a defined time-span.

The weights of maps define the behavior of the
system. In (Goerick et al., 2005) the weights (WV

for visual saliency, WD for disparity, and WM for
Motion) are set according to the information prior-
ity (from highest to lowest): disparity, motion, vi-
sual saliency (WD = 3.0, WM = 2.0, WV = 1.0).
Without any interaction the gaze selection is au-
tonomously driven by the visual saliency and the
memory of the gaze selection. A natural way for
humans to raise the attention is to step into the field
of view and wave at the system. Due to the chosen
weights the system will immediately gaze in the di-
rection of the detected motion. The motion cue can
be used continously in order to keep the gaze direc-
tion of the system oriented towards the hand until
the hand enters the peripersonal space. Again, due
to the chosen weights the signal from the periper-
sonal space will dominate the behavior of the system.
This means that the system will continously fixate
the hand and what is in the hand of the user. Fi-
nally the object recognition learns whatever is shown
to the system in this way.

This pre-designed solution provides very robust
and natural means of interacting with a robot. How-
ever it has a small drawback: if an object is not
presented by a human, but is close to the system,
then it will also be fixated. This can be interpreted
as a symbol grounding problem. The mapping from
the depth signal to the interaction hypothesis is cre-
ated by the designer. The reality does not always
correspond to this mapping but the system can not

find out the discrepancy on its own. Nothing would
change if instead of the reactive system we would
take a self-motivated system which gets rewards from
the described sensory maps with the depth as the
highest reward. This would be an example of a too
specific reward which does not help adaptation as
discussed in section 2. We propose instead to use
“consistency” and “activity” as rewards. The next
section describes how these rewards can be used for
self-motivation.

4.2 Extension of the Reactive System by a
Self-Motivation System

Our implementation of the self-motivation system
follows ideas of homeostatic regulation presented in
(Cos-Aguilera et al., 2003). The difference is that we
use unspecific rewards instead of specific ones and
that we use slightly different dynamics.

The self-motivation system consists of two needs
Ni, i ∈ {1, 2}. The needs are satisfied if their val-
ues are close to zero. If the needs are below a cho-
sen threshold N0 > 0 they are set to this threshold.
Otherwise they change according to dynamics of the
Lotka-Volterra type:
{
τ1dN1/dt = N1(t) (R01 −R1(t)−W1 ∗N2(t))
τ2dN2/dt = N2(t) (R02 −R2(t)−W2 ∗N1(t))

where τi are time constants, R0i characterize the
speed of the need growth in absence of rewards, Wi

are the coupling weights between the different needs,
and Ri(t) are the corresponding rewards. The cou-
pling weights are positive so that a high value of one
need prevents the growth of the others.

The needs in our experiment are: a need of “con-
sistency” and a need of “activity”. In general the
“consistency” reward measures the quality of interac-
tion with the environment. It measures if the action
of the robot leads to consistent sensory observations.
In our example the “consistency” reward is directly
measured as the correlation between the gaze direc-
tion and the entries in the sensory maps described
in the last section. The correlation is calculated as
a total sum of a element-wise product of the sensory
maps and the gaze selection map accumulated over
time. For normalization we use the maximum of the
total sum of elements in the sensory map and total
sum of the elements in the gaze selection map.

While the “consistency” reward characterizes if in-
teraction with the environment is favorable for learn-
ing, the “activity” reward measures if the system
acts. In our experiment “activity” reward is derived
from the difference between the new and the old gaze
direction. For this purpose we calculate the total
sum of the absolute values of the difference between
two successive gaze selection maps.

Similar concepts of opposite motivations were pro-
posed in psychology and robotics for a long time,



e.g. adaptation/expansion, safety/curiosity, or pre-
dictivity/novelty desires. We have chosen an imple-
mentation that stays as close as possible to the sen-
sors in order not to introduce too much design at a
too early stage.

4.3 Exploration of Possible Behaviors

The space of possible behaviors of our system is
spanned by the 3 weights ~w = (WD ,WM ,WV ) which
couple sensory maps to the gaze selection as de-
scribed in section 4.1 and Figure 2. We add a
simple monitoring to the reactive system. The ob-
served combination of reward and weights are stored
into the table at index i ∈ [0 . . .M ] in the form

[~wif ,
~R(~wif )]. The entries in the table characterize

the situation comprising the reward and the active
behavior. A new entry to the table is added when-
ever the distance from the observed situation to the
entries of the table is larger than a threshold Td :
∀i ∈ [0 . . .M ] , ||~wif − ~w||+ ||~R(~wif )− ~R|| > Td. The
best known weight from the table is defined by

~wf = arg max
i

(Rn(~wif )) ,

with n as an index of the most urgent need: n =
arg maxi(Ni − N0). The table provides a primitive
quantization of the behavior space for exploration
only, not for action selection. The action selection
needs a more robust quantization, for example with
help of self-organizing maps as described in next sec-
tion. At the actual stage of research we don’t use any
action selection algorithm other than the exploration
described bellow.

The continuous exploration of the behavior space
is defined by the strength Se and direction ~de. Start-
ing from weight ~ws the system tries out the weight
~we = ~ws + Se~de . At the start of the exploration the
direction is chosen either randomly or towards the
weight predicting the best reward if such informa-
tion is available from the table of known behaviors:
~de = ~wf − ~wl, were the ~wf is the best known weight
as described above and ~wl is the last used weight.The
direction is kept for a while in order to have a hys-
teresis. If the need continues to grow then the direc-
tion is changed to the opposite. The starting point is
the best known weight at the beginning of the explo-
ration and the last used weight during exploration.

The strength Se is controlled by two factors: by
the allowed deviation ∆e from the known behavior
and by the time interval ∆T since the last change
of the exploration: Se = ∆e(1.0 − exp(−τe∆T )) ,
where the τe defines the speed of the exploration.
The allowed deviation is increased if the needs de-
scribed in the last section leave the “viability range”:
∆e ∼

∑
i=1,2(Ni −N0)2 .

In the next section we show how through the ex-
ploration the system can discover an “avoiding” be-

Figure 2: The extension of the gaze selection by self-

motivation. The innate behavior of the system is reac-

tive gaze selection driven by a weighted sum of visual,

depth and motion saliency maps. This innate behavior

is extended by exploration of the weights controlled by

homeostatic regulation of “consistency” and “activity”

needs.

havior with a negative weight of the disparity chan-
nel: (WD = -2.0, WM = 2.0, WV = 1.0). With these
weights the system turns away from the near object.
If the object is just “background”, then it does not
react and there is no correlation between the action
of the system and the sensory map. If the object is
shown by a user, then it is natural for the user to
slightly follow the head movement of the robot in or-
der to stay in interaction. The “consistency” reward
is thus provided only in interaction with the user and
the system can discriminate the disparity signal in-
duced by a user from the disparity signal induced by
a static “background” object.

4.4 Experimental Results

Figure 3 shows a typical run of our experiment. The
parameters are set as follows: τ1 = τ2 = 0.05,
R01 = 0.8, R02 = 0.3, W1 = W2 = 0.1, τe = 0.2.
The needs are initially at the lowest level N0 = 0.05.
We start with the zero disparity weight. Thus the
gaze direction of the system is guided by the visual
saliency only. At step 100 the user enters an object
into the peripersonal space. The user follows slightly
with his object the gaze direction of the robot, thus
creating a consistency reward. The system explores
the disparity weight into the positive direction. This
direction was chosen randomly, as the system has no
particular knowledge about existing rewards. Ap-
proximatively at step 150 the weight is sufficiently
high for fixating the object. As long as the user
moves the object the system performs the tracking.
At this point the system has the same behavior as
the reactive setup in (Goerick et al., 2005). At about



step 220 the user stops the interaction and at step
280 an object is put on the table so that it enters into
the peripersonal space statically. Due to the high
disparity weight the system keeps fixating this back-
ground object. At the step 379 due to the internal
dynamics described in section 4.2 the need of activ-
ity is going out of the viability range and the system
changes the exploration in order to fulfill this need.
At the start of the experiment the system observed
that for the zero disparity weight WD there was a
high reward in the activity. Thus the exploration
goes into the direction of the zero weight. The neg-
ative exploration direction is first kept by hysteresis
and later by the fact that the activity need is decreas-
ing. At steps 500-600 the user comes back. He takes
the former “background” object and follows with the
object the escaping gaze direction of the head signal-
ing the start of an interaction. The system observes
that in the case of an “escaping” behavior it is also
possible to get the consistency reward.

Figure 4 shows another run with different initial
conditions: disparity weight WD = 4.0 and needs
N1(0) = N2(0) = 1.0. The exploration (steps 200-
350) changes the direction several times. In the pre-
vious example it was not the case because there at
the start of the exploration the system already uses
the information from the table of know behaviors and
explores in the direction of WD = 0.0 with the high
activity reward.

For the off-line analysis the data observed dur-
ing the run are mapped with a self-organizing map
(SOM) presented in Figure 5. Results are qualita-
tively the same for both experiments. It can be seen
that the SOM finds well separated clusters both in
observable behavior and in the input space. Our fu-
ture research intends to use these clusters for the
behavior quantization. For example we can see from
the SOM that the “tracking” behavior with a pos-
itive disparity weight leads to rewards only in the
context where both motion and disparity are present.
These two signals are better at predicting the exis-
tence of a human user than the disparity alone. But
the user can also show an object to the system with-
out moving it. Thus we have to learn the strategy
of combining “avoiding” and “tracking” to check the
responsiveness of the environment. Then the system
can discriminate the background activity from a re-
sponse of the environment to the system’s action.

5 Discussion

With the “consistency” reward proposed in this ar-
ticle we aim at putting the system into situations
where it can learn from its interaction with the envi-
ronment. Our measurement of interaction quality is
implemented via a simple action/sensor correlation
in space. This works well for our type of interaction
via the peripersonal space. For vocal interaction one

would need the measurement of responsiveness of the
environment not over space but over time.

A more elaborate measurement of the quality
of system/environment interaction is proposed in
(Oudeyer and Kaplan, 2006). There the reward to
the system is proportional to the progress of learning
to predict the sensory input. Such a reward system
explains well the dynamics of the development and
transitions from simple to more complex situations.
In our work we investigated if a similar rewarding
is appropriate for adaptation. Our reward system is
independent of the chosen learning algorithm. Be-
cause we do not use reinforcement learning we are
not forced to build only one value function. We work
with multiple rewards which are closer to the sen-
sory input than the measure of progress in learning,
but are still unspecific. (Oudeyer and Kaplan, 2006)
also argue against the specific social reward. While
our argumentation is based on the general difference
between unspecific and specific reward for seeking
adaptation, the progress drive hypothesis aims at ex-
plaining the communication development.

In (Oudeyer and Kaplan, 2006) the response from
the communication partner is seen as a communi-
cation affordance. However the responsiveness de-
pends on the context and the state of the partner,
which are not known a-priori. Instead the system
needs an active strategy to detect the responsiveness
of the partner. An example of such a strategy is de-
veloped in (Movellan, 2005) for vocalization on the
base of a pre-designed model for timing of self- and
other-responses. Our approach also starts with a pre-
designed model of interaction captured in reactive
behaviors and the concept of the peripersonal space.
However with the help of self-motivation the sys-
tem can discover the discrepancy between the model
and reality and find the escaping-behavior for active
checking of the responsiveness of the environment.
The strategy to use both escaping and tracking (or
asking and responding in terms of vocal interaction)
is subject to our future research.

Generally we believe that development is not re-
stricted to refinement of internal representations of
contexts and behaviors. Additionally the developing
system creates means to actively check the content
of the representations. We propose that the checking
should use the most basic perceptual elements like
time-space correlation or causality. The grounding is
then provided not only through the self-creation of
representation, but also by the possibility to use the
physical constraints to define the content and to test
the actual instance. In this work we gave an example
of monitoring the existence of responsive partner. In
human daily life one can find many more examples:
shifting an object before grasping (checking out that
the object is separable from the supporting plane),
greeting a person, before asking a question (checking
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out if the person can hear), and so on.

6 Conclusions

The goal of our work is to provide the system with
the means to adapt its reactive behavior and to dis-
criminate the cases of background activity from the
activity coming from the interaction with the envi-
ronment. Our system can show adaptation because
the implementation follows the principles of the de-
velopmental approach:

• starting with a robust interaction with the envi-
ronment as innate behavior,

• usage of environment compliance (here: user’s
adaptation),

• continuous behavior parameterization on the low-
est level, and

• self-motivation with task-unspecific rewards.

The chosen experiment is a simple one. Still it shows
that the developmental approach achieves more than
simply learning behaviors which could be efficiently
pre-designed in a reactive system. The core point
is a careful design of a self-motivation system, its
integration into the reactive system and its rewarding
signals. We do not lose the advantages of reactive
systems (high speed, robustness) while introducing
the “reflective” self-motivation if the latter interferes
only in the situations where the fast, known solution
did not work or the system was free to play. In return
we gain an advantage from the self-motivational part:
if it operates with general, grounded needs then it
can help the reactive part to discriminate in the cases
of symbol-grounding problems.

Finally, we would like to emphasize that the type
of context discrimination tackled in our experiment
is not restricted to the social context. In learning
generally one needs to check if sensory changes are
related to one’s action or if it is a background activ-
ity. Our future research will consider the usage of the
self-motivational system presented here for learning
of object manipulations.
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