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CHAPTER 1

Evolutionary Multi-objective Optimization Approach to

Constructing Neural Network Ensembles for Regression

Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff

Honda Research Institute Europe
Carl-Legien-Str.30, 63073 Offenbach, Germany

E-mail: yaochu.jin@honda-ri.de

Neural network ensembles have shown to be very effective in improving
the performance of neural networks when they are used for classification
or regression. One essential issue in constructing neural network ensem-
bles is to ensure that the ensemble members have sufficient diversity in
their behavior. This chapter suggests a multi-objective approach to gen-
erating diverse neural network ensemble members. A genetic algorithm
is used to evolve both the weights and structure of the neural networks.
Besides, the R-prop learning algorithm is employed for efficient life-time
learning of the weights. Different complexity criteria, such as the num-
ber of connections, the sum of absolute weights and the sum of squared
weights have been adopted as an additional objective other than the ap-
proximation accuracy. Ensembles are constructed using the whole set or
a subset of found non-dominated solutions. Various methods for select-
ing a subset from the found non-dominated solutions are compared. The
proposed multi-objective approach is compared to the random approach
on two regression test problems. It is found that using a neural network
ensemble can significantly improve the regression accuracy, especially
when a single network is not able to predict reliably. In this case, the
multi-objective approach is effective in finding diverse neural networks
for constructing neural network ensembles.

1. Introduction

It has been shown that neural network ensembles are able to improve the

generalization performance both for classification and regression17,3. The

benefit of using a neural network ensemble originates from the diversity

of the behavior of the ensemble members. Basically, diversity of ensemble

members can be enhanced by using various initial random weights, varying
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the network architecture, employing different training algorithms or sup-

plying different training data20. In some cases, it is also possible to increase

network diversity by generating training data from different sources. For

example, the geometry of an object can be represented by parametric or

non-parametric methods. Thus, different sources of training data can be

obtained for describing certain performance of the same object.

Compared to the above-mentioned methods that achieve diversity im-

plicitly, methods for explicitly encouraging diversity among ensemble mem-

bers have been widely studied in the recent years. Measures for increasing

diversity include a diversity index16, degree of decorrelation19, or degree of

negative correlation14,15 between the output of the candidate networks.

Individual neural networks in an ensemble can be trained either inde-

pendently, sequentially and simultaneously11. In the first case, neural net-

works are generated separately and no interaction between the networks

will be taken into account in training. In the second case, neural networks

are generated sequentially. However, the correlation between the current

network and the existing ones will be considered too to encourage diver-

sity. In the third case, neural networks are trained simultaneously, not only

minimizing the approximation error, but also encouraging diversity among

individual networks. Obviously, in the latter two approaches, diversity is

taken into account explicitly. It is believed that one possible disadvantage

of simultaneous training is that the networks in the population could be

competitive11.

In training single neural networks, regularization techniques have

widely been employed to improve the generalization performance of neu-

ral networks3. A general idea is to include an additional term in the cost

function of learning algorithms, often known as the regularization, to avoid

overfitting the training data. Actually, most diversity based methods for

generating ensembles can also be seen as a kind of regularization techniques.

From the multi-objective optimization point of view, adding a regular-

ization term in the cost function is equivalent to combining two objectives

using a weighted aggregation formulation. Thus, it is straightforward to

re-formulate the regularization techniques as multi-objective optimization

problems. Such ideas have been reported4. In that chapter, a variation of

the ε-constraint algorithm was adopted to obtain one single Pareto-optimal

solution that simultaneously minimizes the training error and the norm of

the weights. Similar work has also been reported1, where a multi-objective

evolutionary algorithm is used to minimize the approximation error and the

number of hidden nodes of the neural network. Again, only the one with the
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minimal approximation error has been selected for final use. In addition,

multi-objective optimization has been employed to evolve neural network

modules in a cooperative co-evolution framework to increase diversity of

the modules7.

This chapter presents a method for generating a set of Pareto-optimal

neural networks for constructing neural network ensembles. The genetic

algorithm with Lamarckian inheritance for evolving neural networks9 is

adapted to the multi-objective optimization purpose. To this end, the elitist

non-dominated sorting and the crowded tournament selection suggested6

are adopted for fitness assignment and selection. The whole obtained non-

dominated set or a subset of it is used to construct neural ensembles. The

performance of the ensembles are compared on two test problems. Ensem-

bles whose members are generated using the multi-objective approach is

also compared to those whose member networks are generated indepen-

dently. It is shown that the performance of the ensembles depends to a

large degree on the features of the training, validation and test data.

2. Multi-objective Optimization of Neural Networks

2.1. Parameter and Structure Representation of the

Network

A connection matrix and a weight matrix are employed to describe the

structure and the weights of the neural networks. Obviously, the connection

matrix specifies the structure of the network whereas the weight matrix

determines the strength of each connection. Assume that a neural network

consists of M neurons in total, including the input and output neurons,

then the size of the connection matrix is M × (M +1), where an element in

last column indicates whether a neuron is connected to a bias value. In the

matrix, if element cij , i = 1, ...,M, j = 1, ...,M equals 1, it means that there

is a connection between the i-th and j-th neuron and the signal flows from

neuron j to neuron i. If j = M + 1, it indicates that there is a bias in the

i-th neuron. Obviously, for a purely feedforward network, the upper part of

the matrix, except the M + 1-th column is always zero. Fig. 1 illustrates a

connection matrix and the corresponding network structure. It can be seen

from the figure that the network has one input neuron, two hidden neurons,

and one output neuron. Besides, both hidden neurons have a bias.

The strength (weight) of the connections is defined in the weight matrix.

Accordingly, if the cij in the connection matrix equals zero, the correspond-

ing element in the weight matrix must be zero too.
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Fig. 1. A connection matrix and the corresponding network structure.

2.2. Objectives in Network Optimization

The most common objective function (also known as the error function

or the cost function) in training or evolving neural networks is the mean

squared error (MSE):

E =
1

N

N
∑

i=1

(yd(i)− y(i))2, (1)

where N is the number of training samples, yd(i) is the desired output of

the i-th sample, and y(i) is the network output for the i-th sample. For the

sake of clarity, we assume here that the neural network has only one output.

Other error functions, such as Minkowski error or cross-entropy can also be

used.3

It has been found that neural networks can often over-fit the training

data, which means that the network has a very good approximation ac-

curacy on the training data, but a very poor one on unseen data. Many

methods have been developed to improve the generalization performance of

neural networks. 3 A very popular technique to improve the generalization

performance is known as regularization, which usually adds a penalty term

to the error function:

J = E + λΩ, (2)

where λ is a coefficient that controls the extent to which the regularization

influences the optimal solution, and Ω is known as the regularizer. A simple

class of regularizers is to penalize the sum of squared weights, also known

as the Gaussian regularizer, which favors smooth output of the network:

Ω =
1

2

∑

k

w2
k, (3)
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where k is an index summing up all weights. Alternatively, the sum of

absolute weights, also known as the Laplace regularizer can be used:

Ω =
∑

i

|wi|. (4)

The Gaussian regularizer and the Laplace regularizer are also known as

weight decay in neural network training.

In neural network training using regularization techniques, it is often a

matter of trial-and-error to determine the coefficient λ, although methods

have been developed to optimize the coefficient based on empirical, alge-

braic or Bayesian estimation of the generalization error on the validation

data.21 This situation is quite easy to understand from the multi-objective

point of view. For each given λ, one single Pareto-optimal solution will be

obtained. Obviously, the regularization technique in equation (2) can be

reformulated as a bi-objective optimization problem:

min {f1, f2} (5)

f1 = E, (6)

f2 = Ω, (7)

where E is defined in equation (1), and Ω is one of the regularization term

defined in equation (3) or (4).

Basically, the weight decay techniques try to reach a good trade-off

between the complexity of neural networks and the approximation accuracy

to avoid overfitting the training data. Another straightforward index for

measuring the complexity of neural networks is the sum of connections in

the network:

Ω =
∑

i

∑

j

cij . (8)

Obviously, the smaller the number of connections in a network is, the less

complex the network. Note that this regularizer is well suited for evolution-

ary optimization although it is not applicable to gradient-based learning

algorithms due to its discrete nature. For this reason, we term it as evolu-

tionary regularization.

In the following study, the sum of connections, the sum of absolute

weights and the sum of squared weights are employed as the second objec-

tive in optimization.
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2.3. Mutation and Learning

A genetic algorithm with a hybrid of binary and real-valued coding has

been used for optimizing the structure and weights of the neural networks.

The genetic operators used are quite specific. Four mutation operators are

implemented on the chromosome encoding the connection matrix, namely,

insertion of a hidden neuron, deletion of a hidden neuron, insertion of a

connection and deletion of a connection.9 A Gaussian-type mutation is

applied on the chromosome encoding the weight matrix. One of the five

mutation operators is randomly selected and performed on each individual.

No crossover has been employed in this algorithm.

After mutation, an improved version of the Rprop algorithm10 has been

carried out to train the weights. This can be seen as a life-time learning

within a generation. After learning, the fitness of each individual with re-

gard to the approximation error (f1) is updated. In addition, the weights

modified during the life-time learning are also encoded back into the chro-

mosome, which is known as the Lamarckian type of inheritance2.

In the life-time learning, only the first objective, i.e., the approximation

error will be minimized. The Rprop learning algorithm is employed in this

work because it is believed that the Rprop learning algorithm is faster and

more robust compared with other gradient-based learning algorithms.

Let wij denotes the weight connecting neuron j and neuron i, then the

change of the weight (∆wij) in each iteration is as follows:

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

·∆
(t)
ij , (9)

where sign(·) is the sign function, ∆
(t)
ij ≥ 0 is the step-size, which is ini-

tialized to ∆0 for all weights. The step-size for each weight is adjusted as

follows:

∆
(t)
ij =















ξ+ ·∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

ξ− ·∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

(10)

where 0 < ξ− < 1 < ξ+. To prevent the step-sizes from becoming too large

or too small, they are bounded by ∆min ≤ ∆ij ≤ ∆max.

One exception must be considered. After the weights are updated, it is

necessary to check if the partial derivative changes sign, which indicates

that the previous step might be too large and thus a minimum has been
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missed. In this case, the previous weight change should be retracted:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0. (11)

Recall that if the weight change is retracted in the t-th iteration, the

∂E(t)/∂wij should be set to 0.

It is argued that the condition for weight retraction in equation (11)

is not always reasonable.10 The weight change should be retracted only if

the partial derivative changes sign and if the approximation error increases.

Thus, the weight retraction condition in equation (11) is modified as follows:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0 and if E(t) > E(t−1). (12)

It has been shown on several benchmark problems that the modified

Rprop (termed as Rprop+) exhibits consistent better performance than

the Rprop.10

2.4. Elitist Non-dominated Sorting and Crowded

Tournament Selection

After mutation and life-time learning, the offspring and the parent popula-

tions are combined. Then, a non-domination rank (ri) and a local crowding

distance (di) are assigned to each individual in the combined population as

suggested.6 After that, the crowded tournament selection6 is implemented.

In the crowded tournament selection, two individuals are randomly picked

out from the combined population. If individual A has a higher (better)

rank than individual B, individual A is selected. If they have the same

rank, then, the one with a better crowding distance (the one locating in a

less crowded area) is selected. Compared to the fitness sharing techniques,

the crowded tournament selection gurantees that the one with a better rank

is selected. The crowding distance can be calculated either in the parameter

or objective space. In this work, the distance is computed in the objective

space.

3. Selecting Ensemble Members

So far, the size of ensembles is often determined empirically, with a few

exceptions.22,23 A genetic algorithm is used to select a subset of the final

population as ensemble members.22 In another work23, a genetic program-

ming has been employed to search for an optimal ensemble size.
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Selecting a subset from a given number of networks can also be converted

into finding out the optimal weight for each candidate network based on

a certain criterion. Given N neural networks, the final output of the en-

semble can be obtained by averaging the weighted outputs of the ensemble

members:

yEN =

N
∑

k=1

a(k)y(k), (13)

where y(k) and a(k) are the output and its weight of the k-th neural network

in the ensemble. Usually, all weights are equally set to 1/N , and the overall

output is known as simple average. If the weights are optimized based on a

certain criterion, the overall output is then called weighted average. Given

a set of validation data, the expected error of the weighted output of the

ensemble can be calculated by:

EEN =
N
∑

i=1

N
∑

j=1

a(i)a(j)Cij , (14)

where Cij is the error correlation matrix between network i and network j

in the ensemble:

Cij = E[(yi − yd
i )(yj − yd

j )], (15)

where E(·) denotes the mathematical expectation.

It has been shown17 that there exists an optimal set of weights that

minimizes the expected prediction error of the ensemble:

a(k) =

∑N
j=1(Ckj)

−1

∑N
i=1

∑N
j=1(Cij)−1

, (16)

where 1 ≤ i, j, k ≤ N .

However, a reliable estimation of the error correlation matrix is not

straightforward because the prediction errors of different networks in an

ensemble are often strongly correlated. Alternatively, the recursive least-

square method can be employed to search for the optimal weights. 22 Other

methods have also been proposed to solve this problem. 12,24

In this investigation, a canonical evolution strategy is employed to find

the optimal weights to minimize the expected error in equation 14.

In the multi-objective optimization approach to generating neural net-

work ensemble members, the easiest way is to select all non-dominated

solutions found in the optimization as ensemble members. In the following
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empirical investigations, we compare three cases. In the first case, all non-

dominated solutions found in the final population are used to construct an

ensemble. In the second case, a well distributed subset of the non-dominated

solutions are selected by hand. Finally, the criterion in equation (14) is min-

imized using an evolution strategy based on a validation data set.

4. Case Studies

4.1. Experimental Settings

The population size of the GA used for evolving neural networks is 100

and the optimization is run for 200 generations. In mutating the weights,

the standard deviation of the Gaussian noise is set to 0.05. The weights of

the network are initialized randomly in the interval of [−0.2, 0.2] and the

maximal number of hidden neurons is set to 10. In the Rprop+ algorithm,

the step-sizes are initialized to 0.0125 and bounded between [0, 50] in the

adaptation, and ξ− = 0.2, ξ+ = 1.2. Note that a number of parameters

needs to be specified in the Rprop+ algorithm, however, the performance of

the algorithm is not very sensitive to these values.10 In our work, we use the

default values suggested in reference 10 and 50 iterations are implemented

in each life-time learning.

A standard (15,100)-ES has been used to optimize the ensemble weights

in equation (13) based on the expected error on the validation data. The

initial step-sizes of the evolution strategy are set to 0.0001 and the weights

are initialized randomly between 0.005 and 0.01. The weight optimization

has been run for 200 generations.

4.2. Results on the Ackley Function

The simulation study has been first conducted on the 3-dimensional Ackley

function.13 100 samples are generated randomly between [−3, 3], of which

the first 80 samples are used as training data, another 10 data are used as

validation data, and the remaining 10 data samples are used as test data.

In the first case, the approximation error and the number of connections

described in equation (8) are used as two objectives in evolving the neural

network. The non-dominated solutions in the 200-th generation are plotted

in Fig. 2.

The most straightforward approach is to use all obtained non-dominated

solutions to construct the ensemble. In the final generation, 40 solutions

have been found to be non-dominated. The MSE of the best and worst
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Fig. 2. Non-dominated solutions when number of connections is used as the second
objective.

single networks from the 40 solutions, the MSE of the simple average en-

semble, and the MSE with the weights being optimized using the algorithm

presented in Section 3 are given in Table 1. Notice that in calculating the

MSE of the ensemble on the test data, the weights are those optimized on

the basis of the validation data.

Table 1. MSE of the ensemble consisting of all 40 non-dominated solutions.

best single worst single simple average weighted average

validation 0.121 2.29 0.409 0.118

test 0.348 2.07 0.179 0.361

It is suggested that it might be better to use a subset of available neural

networks than to use all.17,22 For this purpose, different strategies have

been tried. For example, we can select a “representative” subset from the

non-dominated solutions to construct a neural network ensemble. Another

possibility is to select the non-dominated solutions whose MSE error on

training data is smaller than a specified value, or to select those whose

MSE on the validation data is smaller than a given value. Fig. 3 shows the

14 heuristically selected representative solutions (filled circles).

The MSE of the best and worst single networks, the MSE of the ensemble

using simple average and weighted average of the 14 representatives on the
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Fig. 3. 14 selected representatives.

validation as well as the test data are shown in Table 2.

Table 2. MSE of the ensemble consisting of 14 heuristically selected members.

best single worst single simple average weighted average

validation 0.160 2.28 0.279 0.074

test 0.468 2.07 0.236 0.449

Some observations can be made from the results. First, the MSE of the

ensemble using simple average of the 14 selected representatives is worse

than that using all non-dominated solutions. Second, the ensemble with

optimized weights on the basis of the validation data exhibits better per-

formance on the validation data than the one with simple average. Unfor-

tunately, its MSE on the test data is larger than that of the ensemble using

simple average. This implies that validation data set and the test data set

might not have the same statistical characteristics. In this case, it might

be not practical to optimize the weights based on the validation data for

predicting unseen data sets.

The results for ensemble members selected according to the MSE on the

training and validation data, respectively, are shown in Table 3 and 4.

From Tables 3 and 4, it can be seen that the MSE on the test data of

both ensembles are larger than that of the ensemble consisting of the 14

representative networks. Furthermore, good performance on data training
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Table 3. MSE of the ensemble consisting of 14 networks whose MSE on the training data

is smaller than 0.01.

best single worst single simple average weighted average

validation 0.57 1.09 0.84 0.50

test 0.34 0.61 0.43 0.42

Table 4. MSE of the ensemble consisting of 12 networks whose MSE on validation data is

smaller than 0.50.

best single worst single simple average weighted average

validation 0.12 0.57 0.073 0.038

test 0.50 1.40 0.535 0.618

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

Sum of Absolute Weights

M
S

E
 o

n 
T

ra
in

in
g 

D
at

a

Fig. 4. Non-dominated solutions when the sum of absolute weights is used as the second
objective. The shaded circles denotes those selected as a subset for constructing an

ensemble.

or validation data does not mean good performance on test data. Optimiza-

tion of the weights of the ensemble members do not necessarily reduces the

error on the test data.

Next, the sum of absolute weights in equation (4) is adopted as the

second objective in the evolution. The obtained non-dominated solutions

are shown in Fig. 4.

Similar to the above simulations, we calculate the best and worst MSE

of a single network, the MSE of the ensemble with simple and weighted

average over all the 32 non-dominated solutions, or over a heuristically
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selected representative subset (the circles filled with a star in Fig. 4), a

subset whose MSE on the training data is smaller than 0.1, or a subset

whose MSE on the validation data is smaller than 0.5. The results are

presented in Tables 5, 6, 7 and 8, respectively.

Table 5. MSE of the ensemble using all 32 non-dominated solutions.

best single worst single simple average weighted average

validation 0.174 1.52 0.336 0.152

test 0.637 1.91 0.491 0.558

Table 6. MSE of the ensemble consisting of 14 heuristically selected members.

best single worst single simple average weighted average

validation 0.410 1.52 0.363 0.152
test 0.637 1.91 0.361 0.453

Table 7. MSE of the ensemble consisting of 15 networks whose MSE on the training data
is smaller than 0.1.

best single worst single simple average weighted average

validation 0.460 0.62 0.524 0.460
test 0.636 1.72 1.21 1.38

Table 8. MSE of the ensemble consisting of 9 networks whose MSE on the validation data
is smaller than 0.5.

best single worst single simple average weighted average

validation 0.174 0.46 0.172 0.150

test 0.770 1.46 0.560 0.570

From the above results, it can be seen that the use of ensemble is a

reliable way to reduce the prediction error, although the ensemble quality

must not be better than the best member in it. The results also suggest

that it is still an open question how to properly select an optimal subset

from a set of obtained non-dominated solutions to construct an ensemble.

Networks with good performance on either training or validation data sets

are not necessarily good candidates for the test data set. The optimization
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algorithm presented in Section 3 is very effective in minimizing the ensemble

prediction error on the validation data. However, this does not imply that

the MSE on the test data will be reduced too using the optimal weights

obtained on the validation data.

Finally, a single objective optimization has been run for 14 times, where

the MSE on the training data is used as the fitness function. The individual

networks are generated randomly and no interactions between the networks

have been considered. In generating the networks, all parameter settings are

the same as in the multi-objective case. These 14 neural networks are then

used to construct a neural ensemble and the results on validation and test

data are presented in Table 9. The results seem worse than those from the

ensembles consisting of 14 networks that are generated using multi-objective

optimization, as shown in Tables 2 and 6.

Table 9. MSE of the ensemble consisting of 14 networks randomly generated using the
single objective optimization.

best single worst single simple average weighted average

validation 0.270 1.79 0.320 0.220
test 0.655 1.81 0.532 0.595

Finally, a number of non-dominated solutions are obtained using the

MSE and the sum of squared weights as two objectives, which are shown in

Fig. 5. Simulations have been conducted to study the different methods for

selecting ensemble members and very similar results are obtained. Thus,

these results will not be presented in detail here.

4.3. Results on the Macky-Glass Function

In this subsection, neural network ensembles are used to predict the output

of the Mackey-Glass series:

ẋ(t) =
αx(t− τ)

1 + x10(t− τ)
− βx(t), (17)

where α = 0.2, β = 0.1, τ = 17. The task of the neural ensemble is to predict

x(t+85) using x(t), x(t−6), x(t−12), and x(t−18). According to reference

8, 500 samples are generated for training, 250 samples for validation and

the another 250 samples for test.

In the 200-th generation, 34 non-dominated solutions have been found,

which are illustrated in Fig. 6. All the non-dominated solutions are used

to construct an ensemble. The results from the best and the worst single
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Fig. 5. Non-dominated solutions when the sum of squared weights is used as the second
objective.

networks, and those from simple average and weighted average of the en-

semble members are provided in Table 10. From these results, we notice

first that the performance of the simple average ensemble is better than

the worst member, but worse than the best one. Another important factor

is that the performance of the ensemble using weighted averaging exhibits

better performance than the one with simple averaging not only on valida-

tion data, but also on the test data. This indicates that in this example,

the validation data are able to reflect the feature of the test data.

Table 10. MSE of the ensemble consisting of all 34 non-dominated solutions.

best single worst single simple average weighted average

validation 0.0111 0.0488 0.0134 0.0117
test 0.0097 0.0518 0.0118 0.0104

As done in the previous Section, a second ensemble is constructed by

selecting 14 representative solutions from the 34 non-dominated solutions,

which are the filled circles in Fig. 6. The results of this ensemble are pre-

sented in Table 11.

Next, we construct another two ensembles by selecting the networks

having the MSE smaller than 0.012 on the training data and on the valida-

tion data, respectively. According to this criterion, 6 and 7 networks have
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Fig. 6. Non-dominated solutions when the number of connections is used as the second
objective. The filled circles are the representatives.

Table 11. MSE of the ensemble consisting of 14 representatives.

single best single worst simple average weighted average

validation 0.0112 0.0488 0.0129 0.0112

test 0.0097 0.0518 0.0111 0.0099

been selected and the results are given in Tables 12 and 13.

Table 12. MSE of the ensemble consisting of 6 networks whose MSE on the training data

is smaller than 0.012.

best single worst single simple average weighted average

validation 0.0112 0.0116 0.0113 0.0112

test 0.0097 0.0105 0.0102 0.0097

Table 13. MSE of the ensemble consisting of 7 networks whose MSE on the validation data
is smaller than 0.012.

best single worst single simple average weighted average

validation 0.0112 0.0117 0.0114 0.0112

test 0.0097 0.0109 0.0102 0.0097

From these results, it can be seen that no big differences exist between

the various methods for selecting ensemble members. Besides, the ensemble
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with weighted average shows consistent better performance than the one

using simple average. However, the performance of the best single network

is better than that of the ensemble with simple average, and thus the perfor-

mance of the ensemble with optimized weighted average is almost the same

as that of the single best, which makes sense. Nevertheless, the ensembles

with simple average or optimized weighted average show consistently better

performance than that of the single worst network. Furthermore, ensembles

consisting of the selected networks based on training or validation error are

better than those consisting of all or a heuristically selected subset of the

non-dominated solutions. This implies that no significant overfitting occurs

during the training.

Finally, 14 networks are generated randomly using single objective op-

timization. The results of this ensemble are shown in Table 14. It can be

seen that the performance of the ensemble is better than that of the single

worst network but worse than that of the single best. Obviously, diversity

does not help to improve the performance of the ensemble if no significant

overfitting occurs.

Table 14. MSE of the ensemble consisting of 14 randomly generated networks.

best single worst single simple average weighted average

validation 0.01 0.0143 0.0115 0.01

test 0.0095 0.0133 0.0111 0.0095

Simulations have also been conducted when the sum of absolute weights

or the sum of squared weights serves as the second objective on the

Macky-Glass series data. The non-dominated solutions from these opti-

mization runs are plotted in Fig. 7 and Fig. 8, respectively. Notice that

non-dominated solutions whose MSE on the training data is larger than

0.05 are missing from the 200-th generation. This does not mean that such

solutions do not exist. Rather, this is due to the randomness of multi-

objective optimization algorithm introduced by the crowded tournament

selection. As discussed in reference 5, such randomness occurs when the

number of non-dominated solutions in the combined population is larger

than the population size.

The prediction results of the ensembles constructed from these solutions

are omitted here because they are very similar to those presented above

when the number of connections is used as the second objective.
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Fig. 7. Non-dominated solutions when the sum of absolute weights is used as the second
objective.
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Fig. 8. Non-dominated solutions when the sum of squared weights is used as the second

objective.

5. Discussions and Conclusions

Approximation accuracy and complexity have been used as two objectives

to generate neural networks for constructing ensembles. In the algorithm, ad

hoc mutations such as node/connection addition and deletion are employed

without crossover. The Rprop learning algorithm is adopted in life-time
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Fig. 9. Trade-off between the MSE on the validation data and the complexity of the
neural networks.

learning and a Lamarckian inheritance has been implemented. In selection,

the elitist non-dominated sorting and the crowded tournament selection

techniques have been used. This algorithm has proved to be effective in

generating neural networks trading off between accuracy and complexity

through two test problems.

Whereas it is able to improve the performance of the ensemble whose

members have a trade-off between complexity and accuracy if overfitting

occurs, no performance improvement can be expected by use of network en-

sembles when the networks do not overfit the training data. In fact, it seems

that in this case, the network that has the best accuracy on the training

data also exhibits the best performance on the test data. Thus, ensembles

with different degrees of accuracy will degrade its performance. Note that

the proposed method for individual network training belongs to the simul-

taneous approach. Due to the explicit trade-off between the complexity and

accuracy, the individuals in a population are competitive, which is harmful

to the performance of the ensemble if the test data has the same feature as

the training data. This can easily be observed by plotting the relationship

between the MSE on the validation data and the complexity, as shown in

Fig. 9. It can be seen from the figure that the higher the complexity of the

network is, the better.

As argued in reference11, it is equally important that the ensemble mem-

bers cooperate with each other. To this end, the concept of cooperative co-
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evolution18 could play a significant role in generating ensemble members.

This will be our next research direction.
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