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CHAPTER 9

THE INFLUENCE OF STOCHASTIC QUALITY

FUNCTIONS ON EVOLUTIONARY SEARCH

Bernhard Sendhoff1, Hans-Georg Beyer2 and Markus Olhofer1

1Honda Research Institute Europe GmbH,

Carl-Legien-Str. 30, 63073 Offenbach, Germany
2Dept. of Computer Science XI, University of Dortmund,

44221 Dortmund, Germany

In this chapter, we will analyse the influence of noise on the search be-
haviour of evolutionary algorithms. We will introduce different classes
of functions which go beyond the simple additive noise model. The first
function demonstrates a trade-off between an expectation and a variance
based measure for the evaluation of the quality in the context of stochas-
tic optimisation problems. Thereafter, we concentrate on functions whose
topology is changed when the expectation value is taken as the quality
criterion. In particular, for functions with noise induced multi-modality
(FNIM), the process can be regarded as a bifurcation. The behaviour of
two types of evolution strategies is analysed for FNIMs.

1. Introduction

Optimisation in the presence of noise has been studied as early as 1970 in the

area of stochastic programming7. In stochastic programming the objective

function and possibly the constraints are subject to stochastic perturba-

tions. The standard approach for these cases is to work on the expectation

value of the objective functions and therefore, to render the optimisation

problem deterministic. The remaining problem is that the evaluation of the

expectation value might involve a prohibitively large number of function

evaluations. Therefore, one is left to estimate the expectation value with a

residual error. Since evolutionary algorithms are believed to be particularly

robust optimisation techniques, their application to noisy objective func-

tions seems particularly suitable. Fitzpatrick and Grefenstette9 and later

Aizawa and Wah1 analysed genetic algorithms in a noisy environment. The

influence of noise on the performance of evolution strategies was first dis-
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cussed by Beyer5. Tsutsui and Gosh13 claimed that it is not necessary to

explicitly calculate the expectation value for each solution but instead that

it is sufficient to evaluate the solution once and that the population in-

herently ascertains that the expectation value of the objective function is

the target of the optimisation. Although their analysis relies on the schema

theorem and is therefore restricted to proportional selection, empirical re-

sults show that indeed evaluating each individual solution only once instead

of estimating the expectation value of the objective function can be most

efficient.

In almost all cases of practical relevance, it is impossible to evaluate the

expectation value analytically, therefore, it has to be estimated. Whether we

estimate it explicitly by using a sample of size K or implicitly by exploiting

the population, the optimisation method has to cope with statistical fluctu-

ations. Therefore, although theoretically possible, practically, the stochastic

problem can never be reduced to a deterministic one.

A stochastic problem is one where the quality landscape that the opti-

misation algorithms “sees” differs non-deterministically between two eval-

uations. The character of this difference depends on three main aspects:

The type of noise. Most analytical results on noisy evolutionary optimi-

sation were obtained for the simple additive noise model, i.e., the

noise term (usually normally or uniformly distributed) is added to

the objective function value2. This case is depicted in Figure 1(a).

Although interesting analytical results for the algorithm, e.g. on

the role of the population, have been discovered, the character of

the quality landscape is not changed. This differs for systematic

noise models, where the noise term is not restricted to be additive

but can occur anywhere inside the quality function. Robustness

constraints on the optimisation, see e.g. Wiesmann et al.14 and

Branke8, constitute a special case of the systematic noise models,

where the noise term is added to the parameter set, which is de-

picted in Figure 1(b). In this chapter, we will concentrate on the

systematic noise model.

The quality function. Every optimisation problem is unique depending

on the quality function. However, in order to be able to apply em-

pirical or analytical results to a class of problems, test functions

are devised which are simple enough to be susceptible for analy-

sis while capturing the specificity of the problem class. Examples

are the sphere, the ridge function or the Ackley function for multi-
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modal search landscapes. In this chapter, we will propose and anal-

yse a class of test functions which has been called functions with

noise-induced multi-modality (NIMM) by Sendhoff et al.12.

The evaluation criterion. For deterministic single-criteria optimisation

problems the evaluation criterion is usually the minimisation or the

maximisation of the quality function possibly according to some

constraints. For noisy optimisation problems the expectation value

is frequently used as the evaluation criterion although other choices

are possible. Beyer et al.6 proposed a differentiation between sta-

tistical momentum based criteria and threshold criteria, where (for

maximisation problems) the probability that the quality value is

below a certain threshold is minimised. It should be noted that

the choice of the evaluation criterion can fundamentally alter the

characteristics of the search landscape. In the next sections, we

will apply the expectation value as a evaluation criterion mostly

because the analysis involved in the threshold criterion is slightly

trickier. However, we will also use the variance as an additional

measure in Section 2.

(a) (b)

Fig. 1. (a) Variations due to additive noise on the quality function. The dots represent

the fitnesses of individual solutions and the arrows the direction of variation, the under-
lying curve defines a one-dimensional fitness landscape. (b) Variations due to noise on

the parameters resulting in variations along the fitness curve.

Stochastic problems are always (at least practically) dynamic optimisa-

tion problems8. However, in this chapter we will call problems stochastic if

the time-scale of their change is fast compared to the change of the individ-

ual solutions and dynamic if this time-scale is slow compared to the change

of the individual solutions. The latter problem is not the subject of this
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work. After the introduction of different noise models in the next section,

we will analyse the behaviour of two types of evolution strategies for the

new noise model, the NIM functions. In Section 4, we will extend the FNIM

to higher dimensions. In Section 5, we will summarise this chapter.

2. Classes of Noisy Optimization Problems

As we pointed out in the introduction, the character of a noisy optimisa-

tion problema is mainly determined by three factors. The type of noise, the

quality function and the evaluation criterion. In this section, we will in-

troduce three qualitatively different cases of noisy optimisation problems,

which display a particular characteristic property. The first extension of

additive noise models is the sphere function with a noise term added to

the objective parameters F (x) = (x + z)2, z ∼ N (0, ε21). Here N (0, ε21)

denotes a vector of random numbers, where each component is normally

distributed with zero mean and variance ε2. Beyer et al.6 have shown that

for this function the minimum of the original sphere model (x = 0) co-

incides with the minimum of the expectation value and of the variance of

the quality function with systematic noise. Although further analysis nev-

ertheless reveals some interesting properties in particular for the threshold

measure, we will not discuss this case any further.

2.1. Expectation Value – Variance Trade-Off

Although usually only the expectation value is used for noisy optimisation

problems, in particular for robust solutions it is often the minimisation of

the variance which is needed for practical applications. As we noted above

for the sphere model with systematic noise, minimisation of the expectation

value also leads to minimisation of the variance. However, the following

function shows that this does not hold in general:

F1(x) = (x2 − 1) z + x2, z ∼ N (0, ε2),x ∈ IRN . (1)

Here N (0, ε2) denotes a Gaussian distributed random number with zero

mean and variance ε2. The calculation of the expectation value and the

variance gives:

E[F1(x)|x] = x2, (2)

Var[F1(x)|x] = ε2 (x2 − 1)2. (3)

aNote, that in this chapter we will generally deal with minimisation problems unless

otherwise stated.
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Therefore, the minima of the expectation value and the variance are given

by x = 0 and x2 = 1. The minimum of the expectation value corresponds to

a local maximum of the variance, as shown in Figs. 2(a) and (b). For func-

-2

-1

0

1

2 -2

-1

0

1

2

0

2

4

6

8

-2

-1

0

1

2

PSfrag replacements

x1x1

x2

E[F1]

-1

-0.5

0

0.5

1
-1

-0.5

0

0.5

1

0

0.5

1

1.5

2

-1

-0.5

0

0.5

1

PSfrag replacements

x1

x2

E[F1]

x1x1

x2

Var[F1]

(a) (b)

Fig. 2. The expectation value (a) and the variance (b) of function F1 for ε2 = 1, N = 2.

tions like F1 the expectation value and the variance cannot be minimised

at the same time and the problem basically constitutes a multi-objective

optimisation problem, see Jin and Sendhoff 11. We note, that the charac-

teristic of function F1 is that the noise term z is multiplied both to the

parameter values x as well as to a constant term (in this example “1”). If

we replace the constant term by an external parameter, say a, this means

that stochastic variations of the parameter values and of an external pa-

rameter, e.g. the cruising speed for an aerodynamic optimisation problem,

share the same source which is not unlikely to occur in certain applications.

2.2. Topological Changes of the Quality Landscape

If the number of optima of the expectation value of functions is differ-

ent from the noise-free case, we call these changes topological. These func-

tions do not have to be very complex, like previously proposed in the

literature8,14, all that is needed is a noise induced variation between two

minima. As one can easily imagine averaging over such functions will (in

some cases) result in merging minima and thereby absorbing and erasing

the maxima in between the minima:

F2(x) =
(

(x + z)
2 − a

)2

, z ∼ N (0, ε21),x ∈ IRN . (4)

HereN (0, ε21) denotes a vector of random numbers, where each component

is normally distributed with zero mean and variance ε2. Using E[z2] = ε2,
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E[z3] = 0 and E[z4] = 3ε4, for z ∼ N (0, ε2), the calculation of the expecta-

tion value gives:

E[F2(x)|x] = (x2)2 + 2x2
(

(N + 2)ε2 − a
)

+ε2
(

N(N + 2)ε2 − 2aN
)

+ a2. (5)

In Figure 3 function F2 without noise (z = 0) is shown together with the

expectation value E[F2|x]. The minima are merged into one global minimum

at (0, 0) replacing the local maximum. A closer look at Eq. (5) reveals
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Fig. 3. Figure (a): function F2 without noise for N = 2 and a = 0.1; figure (b):
expectation value of F2 for N = 2 and a = 0.1.

that this transition depends on the variance of the noise ε2 and on the

distance between the two minima of the noise free function controlled by

the parameter a. The transition occurs if

ε >

(

a

N + 2

)
1
2

. (6)

The dependence on a is shown in Figure 4. Figure 3(a) also shows that

function F2 without noise does not have one optimum but infinitely many

optima. If we compare this subspace of optimal solutions to the Pareto space

in multi-objective optimisation where we also encounter a possibly contin-

uous set of solutions of identical quality, it is reasonable to say that the

identification of the whole space should be the target of the optimisation.

We will come back to this point in Section 5. Here we only note that the

optimal manifold of function F2 without noise is given by the hyper-sphere

x2 = a. (7)

For N = 2 the manifold is a circle with diameter a as shown in Figure 3(a).
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Fig. 4. The expectation value of function F2 for ε2 = 0.25, x2 = 0, N = 2 and a =

0.4, 1.0, 2.0 (from top to bottom). As predicted by equation (6), the transition occurs

below the critical value of a = 1.

2.3. Functions with Noise Induced Multi-Modality (FNIM)

The transition from single-modal to multi-modal characteristics in a class

of functions under the influence of noise is less straightforward than the

merging of optima demonstrated in the last section for function F2.

The introduction of the FNIM in this section is motivated by the qual-

itative behaviour of evolution strategies for the design optimisation of gas-

turbine blades. The behaviour suggests that the local fitness space might

look similar to the fitness function shown in Figure 5. Since the dimension-

ality of the parameter space of the design optimisation problem is much

higher, the model can only be regarded as one possible interpretation. In
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Fig. 5. Left: Qualitative model for the local fitness landscape motivated by the be-
haviour of evolution strategies for the design optimisation of gas-turbine blades. Right:

Function F3 with n = 2, z = 0, a = 5 and b = 0.2.

the direction of the y-axis (assuming x = 0) the fitness increases nearly

linear along a ridge. The downwards slope from the ridge in the positive

x-direction significantly increases with increasing fitness value. The fitness
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space is bounded by two regions of infeasible solutions (shown by the filled

rectangles) for example due to geometric constraints or unstable results of

the fluid-dynamics flow solver. Needless to say that the position of the infea-

sible region does not exactly coincide with the ridge, but can lie somewhere

on the negative x-axis. Noise is introduced in this fitness model by demand-

ing robustness of the parameter representing the x-direction perpendicular

to the ridge. Thus, the resulting design should display stable performance

under variations of the x-parameter. The optimum of the x−averaged fit-

ness landscape will not remain at the (y = 0)−boundary to the infeasible

region but move along the ridge to smaller y-values assuming that the in-

crease of the downwards slope in the x-direction is sufficient.

Function F3, Eq. (8), displays the linear increase along the ridge and

the sharp decrease in the xN−1-coordinate in the vicinity of the optimum

at (0, 0).

F3(x) = a− |xN−1 + z|+∑N−2
i=1 x2

i

|xN |+ b
− |xN |

z ∼ N (0, ε2), b > 0, x ∈ IRN . (8)

In order to be able to neglect the infeasible regions in the analysis, function

F3 has been designed in such a way that a clear optimum exists when no

robustness is taken into account. Thus, without noise (z = 0) F3 is a uni-

modal function, as shown in Figure 5 for N = 2. Next, we derive E[F3|x]:

E[F3|x] = a− E[|xN−1 + z|] +∑N−2
i=1 x2

i

|xN |+ b
− |xN |. (9)

For z ∼ N (0, ε2), E[|x+ z|] is given as follows:

E[|x+ z|] = E[x+ z]z>−x + E[−(x+ z)]z<−x (10)

=
1√
2πε2

(

x

∫ x

−x
e(−z2

2ε2 )dz + 2

∫ ∞

x

z e(−z2

2ε2 )dz

)

:= ξ(x) (11)

Using (11), we get

E[F3|x] = a− ξ(xN−1) +
∑N−2

i=1 x2
i

|xN |+ b
− |xN |. (12)

E[F3|x] is shown in Figure 6 for fixed values of b and ε. In particular when

we observe the 2D cross section shown in Figure 6, it is evident that the

uni-modal function has changed into a bi-modal function due to averaging

over the variations in one of the design parameters.
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Fig. 6. Left: E[F3|x] with N = 2, a = 5, b = 0.2 and ε2 = 0.25. Right: Two-dimensional
cross section (x1 = 0).

Qualitatively, this process of changing a uni-modal fitness function into

a multi-modal function (or in our example into a bi-modal function) by

averaging over the variations of one parameter is similar to a bifurcation

process. The global maximum becomes a local minimum and two new lo-

cal maxima (of the same height) occur. The bifurcation depends on the

parameter b and on the noise strength, the variance ε2. Numerically, this

dependence is shown in Figure 7. We note that for large b values and for

small variances no bifurcation occurs. Both dependencies are easily under-

stood. The parameter b governs the steepness of the slope near the optimum

(0, 0); the smaller b, the steeper the slope. The noise strength determines

the fluctuation along the coordinate xN−1. Together they both determine

whether the single optimum will persist or whether it will bifurcate.
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the standard deviation ε (left figure) and on the parameter b (right figure).
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In order to analytically investigate the bifurcation behaviour further,

Eq. (11) is too complex. Therefore, we smooth out the ridge and the slope

in Eq. (8) and arrive at the following function F4 which qualitatively shows

a similar behaviour as F3, as shown in Figure 8 for different levels of noise.

F4(x) = a− (xN−1 + z)2 +
∑N−2

i=1 x2
i

x2
N + b

− x2
N ,

z ∼ N (0, ε2), b > 0, x ∈ IRN . (13)

Calculating the conditional expectation of F4 is an easy task. Using

E[(xN−1 + z)2] = x2
N−1 + ε2, we get:

E[F4|x] = a− ε2 +
∑N−1

i=1 x2
i

x2
N + b

− x2
N . (14)

Furthermore, it is straightforward to generalise F4 and E[F4|x] to the multi-

modal case:

F5(x) = a−
∑N1

i=1(xi + zi)
2 +

∑N
i=N2+1 x2

i

b+
∑N2

N1+1 x2
i

−
N2
∑

N1+1

x2
i , (15)

zi ∼ N (0, ε2), b > 0, x ∈ IRN , N1 < N2 ≤ N. (16)

Function F4 is a special case of F5 with N1 = 1, N2 = 2 (note that the

indices are changed). We will come back to function F5 in Section 5.
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Writing
√

∑N−1
i=1 x2

i := r, we can further shorten E[F4|x]:

E[F4|x] = a− r2 + ε2

x2
N + b

− x2
N . (17)
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The conditional variance is given by

Var[F4|x] =
4ε2

(x2
N + b)2

(x2
N−1 + ε2/2). (18)

Now we are in a position to determine the extrema of function F4 by taking

the partial derivative of (17) with respect to xN and setting it to zero

∂E[F4|x]
∂xN

=
2xN (r2 + ε2)

(x2
N + b)2

− 2xN
!
= 0. (19)

Solving for xN one gets the x̂N points of the local optima. Besides the

trivial solution x̂N = 0 there exist also nontrivial ones:

x̂N = ±
√

√

r2 + ε2 − b for r >
√

b2 − ε2. (20)

A closer examination of E[F4|x] reveals that there is a single maximum as

long as the square root on the left-hand side in Eq. (20) is imaginary, i.e.,

for
√
r2 + ε2−b < 0. In this case the maximum is located at (r, xN ) = (0, 0)

and the maximality condition for x̂N = 0 becomes ε < b. That is, there

is a single maximum provided that ε < b. For ε > b the single maximum

bifurcates into two maxima symmetrically located with respect to the r-axis.

This happens, according to (20), for r >
√
b2 − ε2.

3. The Dynamics of Evolution Strategies for FNIMs

Due to the complicated functional structure of E[F4|x], Eq. (14), and

Var[F4|x], Eq. (18), one cannot apply the sphere model theory6 in a sim-

ple fashion. Actually, E[F4|x] depends on two (aggregated) state variables,

therefore, the dynamics and an underlying theory must contain at least two

degrees of freedom. However, there are some clues that, qualitatively, the

behaviour should share some common properties with the sphere model.

At least the steady-state behaviour should exhibit some kind of residual

localisation error for the optimiser: Because of Eq. (18) Var[F4|x] > 0 does

always hold (provided that ε > 0), even for the case (r, xN ) = (0, 0).

In order to get a certain feeling how the ES evolves on function F4, ES

runs have been performed. They are displayed in Figs. 9 – 11. The value

of the parental vector x was randomly initialised on a hyper-sphere with

radius R(0). Considering the shape of F4 for vanishing noise (cf. Fig. 8,

ε = 0), it becomes clear that under such random conditions the quadratic

xN part in (14) dominates resulting in large negative F4-values. The ES

increases these F4-values very fast as can be seen in Fig. 9 (the average

〈F4〉 of the µ parent fitnesses is displayed). The fast F4 increase stops when
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the “ridge”-like region has been reached. Then the dynamics changes into

a linear one, the parental distance to the optimum R(g) = ‖x(g)‖ decreases
obeying an almost perfect linear time law. The CSA-ES evolves faster to

the steady-state than the σSA-ES. The steady-state is again characterised

by a non-vanishing localisation error.

Figure 10, left-hand side, shows the approach to the steady-state con-

sidering the evolution of the xN coordinate. Apart from the burst between
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Fig. 10. Dynamics of the xN -coordinate of the (30/30I , 60)-ES run from Fig. 9 on F4

using CSA and σSA, respectively. Left figure: transient phase; right figure: steady-state

phase.

generation g = 1700 to 2200, there is nothing special with that coordinate.

In the steady-state (right-hand side) it fluctuates around the zero line. How-

ever, consider Fig. 11, the difference to the ES run considered in Figs. 9 and

10 is the increased noise strength ε = 0.75. For this noise parameter, the
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Fig. 11. The same conditions as in Fig. 10, but ε = 0.75 has been chosen.

σSA-ES exhibits a (random) periodic behaviour jumping back and forth

between two attractors. Using a slightly smaller noise strength ε = 0.7,

the time period gets smaller, Conversely, using larger noise strengths, e.g.

ε = 1.0, the σSA-ES stays in one of the attracting regions forever (see the

right-hand side in Fig. 12). While the σSA-ES exhibits periodic behaviour
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Fig. 12. The same conditions as in Fig. 10, but ε = 1.0 has been chosen.

for a certain noise level interval, the behaviour of the CSA-ES is more

conservative. The reason for that lies in the small mutations strengths σ

the CSA-ES randomly evolves when reaching the (almost selection neutral)

steady-state. That is, unlike the σSA-ES, there is not enough mutation

strength to push the ES system from one attractor to the other.
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4. Steady State Behaviour of the Evolution Strategy on

Function F4

In order to estimate a lower bound on the residual localisation error we

apply findings from the “standard” fitness noise model for evolution strate-

gies, see the work by Arnold and Beyer3,4 and Beyer et al.6. In the standard

model the noise term in the fitness function is additive and normally dis-

tributed δ ∼ N(0, σ2
δ ). In order to apply the stability condition to ensure

local convergence in the mean, which is given by (see Arnold and Beyer4)

σδ <
R2 |β|
N

µcµ/µ,λ, (21)

(R = R(g) denotes the parental distance to the optimum, cµ/µ,λ the progress

coefficient and β the factor of the sphere function) we first have to introduce

appropriate sphere model approximations. Therefore, we have to neglect the

influence of xN in the denominator of Eq. (13). This step yields an ellip-

soidal model. In a next ad hoc step, we assume that the eccentricity of the

ellipsoid can be neglected. This leads to the desired sphere approximation

(dropping the constant term a)

Qsp(x) = −‖x‖2/b = −R2/b. (22)

In the variance expression (18) we neglect xN−1 and xN totally, as a result

σδ =
√

Var[f2] =
√
2ε2/b. (23)

Now, the evolution criterion (21) together with (23) and β = −1/b is applied
√
2ε2

b

Nb

2R2
< 2µcµ/µ,λ (24)

and finally solving for R, one obtains

R > R∞ =
ε

2

√ √
2N

µcµ/µ,λ
. (25)

Figure 13 shows the predictive quality of this formula. Even though

the predictions seem to be relatively good, one should keep in mind that

this result was obtained for a “moderate” b-value. One can easily violate

the sphere condition by choosing more extreme b-values. Furthermore, con-

sidering larger ε-values, it appears that the asymptotic behaviour of (25)

seems not to be correct.

Figure 13 (bottom) shows the behaviour of the mean value of the xN
coordinate in the steady-state. It reflects the behaviour observed in Figs. 10

– 12: Up to a certain ε the mean value is zero. After specific ε, the absolute

mean values grow monotonously with the noise strength.
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5. Extending F4 to a More General Function Class

Considering broader and different classes of FNIM, respectively, is useful for

at least two reasons. First, it broadens the view concerning the behaviour of

EA in noisy settings, thus providing deeper insight in certain aspects of ro-

bust optimisation. Second, finding a special FNIM class which is especially

suited for an analytical investigation of the ES behaviour on this functions.

We discuss the properties of Function F5 introduced in Section 2, Eq. (15)

in this section in more detail. Using a slightly different notation, function

F5 can be re-written as:

F5(x) := a−
r2
1 +

∑N2−1
i=N1

(xi + zi)
2

b+ r2
3

− r2
3, b > 0, (26)
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Fig. 13. Dependence of the mean value of the steady-state R (top figures) and of

the steady-state xN (bottom figures) on the noise strength ε. For the simulations a

(30/30I , 60)-ES has been used. Parameters of f2 are a = 5, b = 0.5. The left figure was

obtained for dimensionality N = 20 (ε = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5,
4) and the right figure for N = 100 (ε = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1, 1.25, 1.5,

1.75, 2). The data points from the CSA-ES, displayed by “+”-symbols, are the average

over generations g = 3000 (7000 for N = 100) to 40000 those of the σSA-ES, displayed

by “×”, are the average over generations g = 8000 (10000 for N = 100) to 40000. The

linear curves represent Eq. (25).
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where

r1 :=

N1−1
∑

i=1

x2
i , r3 :=

N
∑

i=N2

x2
i , 1 ≤ N1 < N2 ≤ N, (27)

with

zi ∼ N (0, ε2). (28)

We will discuss F5 with respect to the mean value robustness. Since for each

parameter space component with i = N1, . . . , N2 − 1 the result of Eq. (14)

holds similarly, we obtain for the expected value

E[F5|x] = a− r2
2 + (N2 −N1)ε

2

b+ r2
3

− r2
3 (29)

with r2 defined by

r2 :=

N2−1
∑

i=1

x2
i . (30)

Comparing this expression with (17) we see the great similarity of both

expressions. This also transfers to the optimal object parameter settings:

E[F5|x] is locally optimised for r2 = 0, that is, the first N2−1 xi coordinates

must be zero. Applying the stationarity condition ∂E[F5|x]/∂r3 = 0 for the

coordinate aggregation r3 yields

r̃3 = 0, for r2 ≤
√

b2 − (N2 −N1)ε2, (31)

r̃3 =

√

√

r2
2 + (N2 −N1)ε2 − b, for r2 >

√

b2 − (N2 −N1)ε2. (32)

Thus, we see that the global optimiser (use r2 = 0 in (31)) depends on ε

according to

x̂ = 0, for ε ≤ b/
√

N2 −N1, (33)

x̂ = (0, . . . , 0, x̂N2
, . . . , x̂N )

T
, for ε > b/

√

N2 −N1, (34)

where the x̂N2
, . . . , x̂N must conform the condition r̂3 =

√√
N2 −N1ε− b

N
∑

i=N2

x̂2
i =

√

N2 −N1 ε− b. (35)

This is an interesting result: For N2 < N there are no two global optimal

solutions, but a (N − N2)-dimensional manifold of solutions located on a

(hyper-sphere) of radius
√√

N2 −N1 ε− b and origin at (0, . . . , 0) in the

IRN−N2+1 subspace of the coordinates xN2
, . . . , xN . This may be regarded
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as an extreme form of multi-modality or as some kind of indifference. One

can easily calculate the maximal expected fitness by inserting (33) and (35)

into (29) with the result

F̂ 5 = a− (N2 −N1) ε
2/b, for ε ≤ b/

√

N2 −N1, (36)

F̂ 5 = a+ b− 2
√

N2 −N1 ε, for ε > b/
√

N2 −N1. (37)

Summing up, test function (26) allows for two types of noise-induced

multi-modality:

(1) bimodality for N2 = N and

(2) infinite multi-modality for N2 < N .

While the existence of the first case has already been confirmed by real ES

runs in the last section, the second case is presented here. Figures 14 and

15 shows steady state values of ES runs on F5 with a = 5, b = 1, N = 40,

N1 = 23, N2 = 39. That is, r3 is the aggregation of xN−1 and xN . As one
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Fig. 14. On the distribution of the optimiser states of function F5 (a = 5, b = 1,

N1 = 23, N2 = 39, N = 40) in the vicinity of the steady state (8000 data points used)

for ε = 3. The left figure was obtained using the (5/5I , 10)-σSA-ES, the right figure

using the (5/5I , 10)-CSA-ES.

can see, if ε is sufficiently large, the behaviour predicted by (34) is observed.

For small ε, xN−1 and xN as well as the other x coordinates fluctuate

around the zero state. This is in accordance with (33). The fluctuation

around the optimiser state is the typical behaviour evolutionary algorithms

do exhibit when evolving in a noisy environment. Note, while (35) describes
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Fig. 15. On the distribution of the optimiser states of function F5 (a = 5, b = 1,
N1 = 23, N2 = 39, N = 40) in the vicinity of the steady state (8000 data points used)
for ε = 0.1. The left figure was obtained using the (5/5I , 10)-σSA-ES, the right figure

using the (5/5I , 10)-CSA-ES.

the optimum distance to the origin the x coordinates should realize, the

actually observed mean value of the steady state r3 deviates from this

optimum. In the experiments conducted for Figs. 14 and 15 one measures

r3 ≈ 4.3 for the (5/5I , 10)-σSA-ES and r3 ≈ 4.1 for the CSA-ES (ε = 3).

The optimum value, however, is r̂3 =
√
11 ≈ 3.32. The actually observed

mean value is a result of the evolutionary algorithms and depends on the

strategy parameters. Its calculation is still a pending problem.

It is interesting to notice the different behaviours the σSA-ES and the

CSA-ES exhibit for the case r̂3 > 0. As one can see in Fig. 14, the CSA-ES

(right figure) does not occupy the whole circle (notice, this is a plot of a

single ES run). Depending on the initial values chosen, it is likely to observe

this typical pattern. The reason for this observation can be traced back

to the evolution of the mutation strength in CSA-ES under the influence

of heavy noise also observed in the evolution dynamics of F4 and other

test functions (see Sendhoff et al.12). Under heavy noise, the CSA-ES first

reduces the mutation strength σ and then it more or less performs a random

walk in the σ values, but keeping these values small. However, small σ values

result in small changes of the object parameters. (This can also be observed

in the right picture of Fig. 15.) In other words, the CSA-ES becomes less

explorative. Under such conditions, the CSA-ES is not able to explore the

whole r3 = const. subspace efficiently. This is in contrast to the σSA-ES

which does not reduce the mutation strength in such situations. Which one
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of the two behaviours is more desirable, however, is application dependent.

Therefore, we cannot give a definitive answer as to the question which of

the two σ-adaptation rules should be preferred.

6. Summary and Conclusion

In this chapter, we discussed the effect of noise on the search space in

evolutionary algorithms. We introduced three main characteristics which

go beyond the simple additive noise model. The expectation-variance trade-

off, the topology changing functions and the functions with noise induced

multi-modality (FNIM). The last two function classes have the remarkable

property of qualitatively changing the topology under the influence of noise.

For the FNIM’s the change from uni-modal to bi-modal or multi-modal

fitness landscapes which we termed a bifurcation process using the analogue

from nonlinear dynamics, occurs when a measure for the robustness or

stability of the solution is used for the fitness.

We derived the conditions for bifurcation and empirically analysed the

influence of the topological change of the fitness landscape on the behaviour

of two types of evolution strategies, the cumulative step-size adaptation

method and the “standard”, mutative self-adaptation method. Whereas

the later one exhibits periodic behaviour for a certain noise level interval,

the CSA method tends to converge to one of the two optima. Although the

proposed class of test functions is rather different from the sphere model,

we were able to transfer some results from sphere model analysis at least

qualitatively. In order to extend this analysis to a more quantitative one,

which could help to give some insight into appropriate ranges of parameters

like population size and selection pressure, requires a substantial step in

the theory of evolutionary algorithms. However, at the same time, it can

serve as an interesting test problem in this domain, because of its “natural”

transition from uni-modal to bi-modal characteristics.

The extension of FNIMs F3,4 to a more general class of functions F5

in the last section demonstrated an additional important aspect for com-

paring CSA-ES and σSA-ES. The fact that for function F5 the bifurcation

leads to a manifold of optimal solutions (instead of to two isolated optima)

highlighted the different behaviour of the two types of evolution strategies

for exploring selectively neutral parts in search space. However, as we have

seen already for function F2 the fact that optima are not necessarily unique

is by no means restricted to noisy optimisation tasks. Whether we should

demand from an optimiser to identify one single solution as fast as possible
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(CSA-ES) or the identification of the whole set of optimal solutions (σSA-

ES) has to be answered for each specific application separately. At the same

time, looking at the area of multi-objective optimisation where the notion

of a space of optimal solutions, i.e. the Pareto space, occurs naturally, the

identification of all solutions might be desirable.
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Appendix A. Description of the Evolution Strategies

The σ self-adaptation technique is based on the coupled inheritance of ob-

ject and strategy parameters. Using the notation

〈a〉(g) := 1

µ

µ
∑

m=1

a
(g)
m;λ (A.1)

for intermediate recombination (centroid calculation, i.e., averaging over the

a parameters of the µ best offspring individuals), the (µ/µI , λ)-σSA-ES can

be expressed in “offspring notation”

∀l = 1, . . . , λ :







σ
(g+1)
l := 〈σ〉(g)eτNl(0,1)

y
(g+1)
l := 〈y〉(g) + σ

(g+1)
l N l(0,1).

(A.2)

As learning parameter τ = 1/
√
N has been chosen in the simulations.

While in evolutionary self-adaptive ES each individual get its own set

of endogenous strategy parameters, cumulative step-size adaptation uses

a single mutation strength parameter σ per generation to produce all the

offspring. This σ is updated by a deterministic rule which is controlled

by certain statistics gathered over the course of generations. The statistics

used is the so-called (normalised) cumulative path-length s. If ‖s‖ is greater
than the expected length of a random path, σ is increased. In the opposite

situation, σ is decreased. The update rule reads

∀l = 1, . . . , λ : y
(g+1)
l := 〈y〉(g) + σ(g)N l(0,1)

s(g+1) := (1− c)s(g) +
√

(2− c)c
√
µ

σ(g)

(

〈y〉(g+1) − 〈y〉(g)
)

σ(g+1) := σ(g) exp
(

‖s(g+1)‖−χN

DχN

)

(A.3)
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where s(0) = 0 is chosen initally. The recommended standard settings for

the cumulation parameter c and the damping constant D are used, i.e.,

c = 1/
√
N and D =

√
N , see also Hansen and Ostermeier10.
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