go back

A Many-Objective Configuration Optimization for Building Energy Management

Tobias Rodemann, "A Many-Objective Configuration Optimization for Building Energy Management", WCCI 2018 Conference, 2018.

Abstract

For a commercial building or campus, the management of local energy production, storage, and consumption, promises substantial gains in efficiency and reduced costs and emissions. When facility managers are planning updates to an existing building complex, they face a variety of options for investment. This work targets to provide support for this investment decision by performing a many-objective optimization (MAO) of the system configuration considering initial investment cost, running costs, CO2 emissions, and system resilience. In our specific example the potential investment covers a photo voltaic (PV) system, a stationary battery, and a heat storage. We also consider potential changes to the operation of an existing heat-power co-generation unit (CHP), by optimizing controller parameters. The proposed system is simulated using a Modelica-based software environment. In this work we show the results of our configuration optimization using the well-known NSGA-III algorithm and also consider the problems of variable run-times of the simulator on the optimization process especially for a parallel execution of fitness evaluations on a computing cluster.



Download Bibtex file Download PDF

Search

Cookies preferences

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

Necessary

Necessary
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.