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Spectral cues to source position in robots with arbitrary ear shapes

Tobias Rodemann

Abstract—The ability to localize a sound source is very
important in interaction scenarios where the robot has to face
the speaker. It is known that the horizontal position of a sound
source can be easily estimated using only two microphones,
however, the elevation is more difficult to determine in such a
configuration. To deal with these problems the use of special
outer ears (so called pinnae) has been proposed in order to
allow the use of spectral cues for elevation estimation. Here
we compare two algorithms that can extract spectral cues for
arbitrary ear shapes and are able to localize a broad class of
sounds under challenging real-world conditions. The algorithms
run in real-time and are implemented on a real robot-head.

I. INTRODUCTION

With robots entering the domestic and entertainment

market, the ability to communicate with humans becomes

increasingly important. For the purpose of speech recognition

it is generally advisable to know the position of the speaker.

This would improve sound source separation [1], facilitate

visual speech recognition (e.g. lip reading) and is necessary

to robustly identify the speaker in multi-speaker scenarios.

It also allows to bring the limited field of view of typical

camera setups onto the speaker. Three spherical coordinates

have to be extracted: azimuth, elevation, and distance. The

first coordinate, the horizontal position, is often considered

to be the most important one for interaction scenarios, while

the other two coordinates are often ignored. In this article

we focus on the second coordinate, the source’s elevation. It

could provide important information to single out irrelevant

sounds (e.g. foot-steps tend to come from below and air-

conditioning noise from above) and to determine the height

of a speaker (allowing the identification of children).

With a horizontal setup of the microphones the standard

binaural cues Interaural Intensity Difference (IID) and Inter-

aural Time Difference (ITD) will not vary much with varying

elevation angle, at least in theory. In practice, we have

previously shown [2] that binaural cues are indeed capable of

providing a combined azimuth and elevation estimation, or a

combined azimuth and distance estimation [3]. However, the

performance of IID and ITD on their own is insufficient to

provide a robust 2D localization under real-world conditions.

Several authors have proposed to use a different type

of localization cue to estimate a source’s elevation. These

approaches use so-called spectral cues that are modifications

of the source signal in a position-dependent way. These

signal changes are induced by interactions of the sound with

the physical structure of the robot. Of very high importance

in biology are the outer ears of animals, so called pinnae. It
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was previously proposed (see e.g. [4]–[6]) to attach structures

similar to humans’ outer ears next to the robot’s microphones

to add direction dependent spectral cues that can be used

for elevation estimation. Previous approaches had one or

more of the following drawbacks: They often used simplified

ear shapes, that showed a weak performance with lateral

sounds. They also required a substantial amount of human

intervention in the selection of the best spectral cues to use.

Finally, they only work in a specific frequency range, so that

sounds that exhibit no energy in this frequency range can’t

be localized correctly.

In contrast we present an approach that computes a large

collection of audio cues in the full frequency range and learns

the relation of these cues to the source’s (2D) position. The

approach is not principally limited to a specific ear shape

(although some ears work better than others) and does not

resort to a human designer for hand-picking the best spectral

cues. We compare this with a previously proposed approach

that also works using arbitrary ear shapes.

Our approach is biologically inspired, mimicking the func-

tion of specific neurons in the auditory sub-cortical structures

of mammals [7]–[10]. Certain neurons are known to respond

selectively to specific spectral features, commonly summa-

rized as ’notch’ features although other types of spectral

features like peaks are also found. These neurons effectively

link a certain spectral feature and the corresponding positions

in the outside world for which those features commonly

appear. This relation can be learned in a standard training

session with a supervision signal (the true position of a sound

source) and could also be learned adaptively in an online-

system if other cues to position are available.

A. Comparison to Related Work

While a spectral cue-based localization is not commonly

used in robot audition, a number of approaches with some

similarities to our approach have been presented. Nakashima

and Mukao [4] have presented a system with simple, artificial

pinnae. Their results were convincing but tests were limited

to white noise signals and performance decreased for lateral

sounds. As spectral features they concentrated solely on

notches of the spectral envelope signal. A similar ear design

was employed by Hörnstein et al. on the iCub robot [5].

They used binaural signal differences, but hand-designed

the spectral features to rely on, i.e. they decided manually

which characteristics in which frequency range are used to

estimate the sound’s elevation. They showed good results

also for speech sounds in a free interaction scenario. Along

the same design of ear shapes is the work of Kumon et al.

[6] which also employs simple pinnae shapes that produce



a direct, simple relation between selected audio features like

the position (frequency) of a characteristic notch and the

source’s elevation.

There are a number of problems associated with these

approaches, however. For every ear design the system de-

veloper has to manually identify the optimal spectral feature

and the parametrization of the function mapping the position

of the spectral feature in frequency space to the elevation of

the sound source. This function has been approximated by

higher-order polynomials [5] or learned from training data

[4], but the choice of cues is still manual. Also the simple

design of these ears might for some applications not be

feasible, e.g. where design constraints are to be considered.

There is furthermore the problem that the relevant spectral

features often cover only a small subband of frequency space,

which means that sounds outside this frequency range are

difficult to localize. Finally these approaches employ spectral

cues only to estimate the source’s elevation, although we

could show [2] that they also provide useful information to

estimate the source’s azimuth position and that this infor-

mation is at least partially complementary to those extracted

from binaural cues.

A more biologically-inspired approach is followed in the

work of Neti and Young [9], who are using a neural network

to predict a sound source’s elevation using data derived

from experiments with cats. Gill et al. [11] employed a

neural network that uses, instead of binaural spectral signals,

several monaural signals from slightly different microphone

positions. They argue that animals with movable ears, like

cats, could easily vary the ears’ position during localization

of the sound.

Finally, Saxena and Ng [12] try to predict the spectral

features of a sound based on previously learned sound regula-

rities and compare this to the recorded monaural signal. Their

microphones are also surrounded by a pinna-like structure.

In [2] we have already demonstrated the usability of

spectral cues for sound localization. However in the latter

article the focus was on the interplay with binaural cues.

In the article at hand we take a closer look at spectral

features which are often proposed in biology but rarely

used in robotics. We evaluate the performance of different

biologically inspired methods and outline how they could be

used in future robotic systems.

II. METHODS

We are employing a biologically-inspired approach to

sound localization and use a human-like robot head with

two microphones attached to the sides. The shape of the

ears (see Fig. 1) is modeled after a human’s ears. The basic

preprocessing system is described in more detail in [13],

so that only a condensed description will be given in the

following.

A. Preprocessing system

We are recording stereo sounds with a sampling rate of

48 kHz. The first processing step is a Gammatone Filter

Bank (GFB) [14]–[16] as a model of signal preprocessing

Fig. 1. Shape of (right) pinna employed in our system (CAD data),
inspired by human ear shapes. Note that left and right ear shapes are
slightly different, as indicated by the blue (left ear) and white (right ear)
line outlining the shape of the so-called concha structure of the ears. This
asymmetry was used to reinforce binaural differences.

in the human cochlea that uses 100 filters with center

frequencies between 1–11 kHz. Afterward we compute the

signal’s envelope through rectification and frequency-specific

low pass filtering. To remove stationary background noise,

we employ a modified version of spectral subtraction [17],

using Minimum Controlled Recursive Averaging [18], [19] to

estimate the noise level. The final output of the preprocessing

is the envelope signal el,r(k, f ) of the left (l) or right (r)

microphone at time index (sample) k for the f -th frequency

band (GFB channel number).

B. Binaural spectral difference vector

The spectral vector v = ~el,r(k) is a vector of envelope

values for all frequencies, i.e. the distribution of signal

energies in the different frequency bands. It depends on both

the signal’s content, e.g. which word is being said, and the

Head Related Transfer Function (HRTF), a source position

dependent modulation of the signal. While the second part in

principle allows us to infer the source’s position, the first part

is position independent and not principally known. A number

of approaches have been put forward to remove the influence

of the source signal on the spectral vectors: measuring the

sound from two slightly different positions of the head [11]

or trying to infer the characteristics of known source signals

[12]. In this work we are using a method that was also

proposed by [5], that is to subtract the spectral vectors of the

left and right ear. Beforehand we apply a log operation on

the envelope vector. We call the result the Binaural Spectral

Difference Vector BSDV ~d(k):

~d(k) = log10(~el(k))− log10(~er(k)) = log10

(

~el(k)

~er(k)

)

(1)

Due to filtering effects of the robot’s head and ears, the

BSDV exhibits a number of peaks and notches that are

characteristic for different positions (see Fig. 3). BSDVs for

different sound source positions are shown in Fig. 2.

C. Segmentation

BSDVs are averaged over different samples with a sample-

wise weighting that depends on the total energy of a sample:
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Fig. 2. Binaural spectral difference vectors for two different sounds
(English ’One’ and Japanese ’ichi’ from a different speaker) from two
different elevation angles (30 (top) and -30 (bottom)) at an azimuth angle
of 0 (directly in front of robot).

~d = ∑
k∈segment

A(k)~d(k) , (2)

where A(k) is the signal amplitude in sample k computed

as A(k) = 0.5∑ f (~el(k, f ) +~er(k, f )), where f sums over

all frequency channels. Segmentation is done via a signal

amplitude-based threshold operation as specified in [20]. The

result is a single BSDV for a single utterance (e.g. a word).

D. Approach 1: Extraction of sparse spectral cues

We observed that even under noise conditions, the position

of peaks and notches in the BSDV is rather stable, while

the relative height of the peaks varies substantially. We

also found that in some cases it wasn’t the position of

peaks and notches that was invariant but rather the position

of the maximum of the slope of the BSDV. We therefore

define four classes of spectral cues: peaks (maxima of ~d),

notches (minima of ~d), slope maxima (maxima of ∆~d), and

slope minima (minima of ∆~d). We found that performance

improves when we only use peaks that are above (for

maxima) or below (for minima) a certain threshold θ . Before

thresholding the BSDV is normalized to a maximum of one.

The optimal threshold was found to be at θ = 0.3. The

averaged sparseness of spectral cues is 6%, that means only

6% of all possible spectral cues are active for a sound (e.g.

on average there are only 6 peaks in a BSDV). Optima

are found by looking for frequency channels in the BSDV

or its derivative which have higher (or lower) values than

both neighboring frequency channels. These spectral cues

are shown in Fig. 3. The complete localization approach is

shown in Fig. 5 (bottom left).
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Fig. 3. Binaural spectral difference vector and extracted spectral cues.
Consider that only extrema above the threshold θ = 0.3 were used.

Azimuth

E
le

v
a
ti
o
n

Relative occurence probability for a notch at 4.36 kHz

−80 −60 −40 −20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Fig. 4. Probability of occurrence of a spectral cue (here: a notch at 4.36
kHz) as determined from the calibration database. High values are encoded
as white, low values as black.

Specific spectral features tend to appear for a number of

discontinuous regions in the azimuth-elevation space (see

Fig. 4) resulting in high localization errors if the wrong

region is chosen. Our algorithm, upon receiving a new

sound, looks for spectral cues in the BSDV . For every

found spectral feature certain regions in azimuth/elevation

space are activated, with activity from different spectral cues

being additive. Position-dependent spectral cue templates can

be built by averaging these template for a larger number

of sounds from the same, known position in a calibration

sequence. In this calibration process we learn at which sound

source positions a certain spectral feature, like a peak in a

certain frequency, occurs. For calibration we used a separate

training set of sounds over which the average response of

spectral filters was computed. For sound source localization,

upon detecting specific spectral cues, we invert this relation

and activate those regions that produced the detected spectral

cues in the calibration set (contributions from different cues

are summed). The position that accumulated the maximum

evidence was taken as the most likely position of the sound.

For a visualization see Fig. 6.

E. Alternative Approach 2: BSDV matching

In a previous paper [2] we have shown a similar algorithm

that directly compares BSDVs for source position estimation.

For localization we computed the similarity between the

currently measured BSDV ~dm with template BSDVs ~d(p)



Fig. 5. Diagram showing the two localization approaches. Differences are
only in the final processing stages. Approach 1 using sparse spectral features
is shown in the bottom left while approach 2 (matching of BSDVs) is shown
in the bottom right .

for every position p (representing azimuth and elevation).

Similarity S(p) for a position p is based on the normalized

scalar product:

S(p) =
~dm · ~d(p)

|~dm| · |~d(p)|
(3)

Similarities are directly interpreted as evidence for certain

positions analogous to the accumulated evidence for the first

approach. The approach is shown in Fig. 5 (bottom right).

III. RESULTS

We used a database of 50 sounds from 19 horizontal

(between -90 and +90 degrees) and 13 vertical (between -60

and +60 degrees) positions to evaluate our model. Sounds

consist of short speech phrases from several human speakers

plus some environmental sounds. The recordings were done

in a noisy lab of dimensions 12 m x 11 m x 2.8 m with

substantial echoes (T60 = 810 ms) and background noise

(computers, air-conditioning). Sounds were produced by a

loudspeaker at a fixed position 1 m away from the robot

head. In the recording session the robot head moved to one

of the 19*13 = 247 pan/tilt positions (thereby changing the

relative position of the loudspeaker). Then the loudspeaker

generated all 50 sounds which were recorded and stored to

file. Sound preprocessing up to the BSDV was performed

in our middleware RTBOS [21]. The final computation and

performance analysis was done in Matlab [22]. We also have

a full online implementation that can estimate the azimuth

and elevation coordinate of a sound source and direct the

robot head to gaze at this position. This system employs

both binaural localization cues like IID and ITD (see [2],

[13]) and spectral cues (approach 2).

For all our tests we have employed 10-fold cross validation

to compute performance values. We compute mean azimuth

and elevation localization errors (absolute difference between

true and estimated azimuth and elevation angle averaged over

all sounds in the test database), the hit percentage (how
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Fig. 6. Accumulated position evidence using the spectral cue approach (1)
for two different source positions. In the top figure the maximum evidence
position is very close to the correct location, but in the bottom example the
estimation is far off-target. However, substantial position evidence can be
found at the correct position (11.9 relative to 15.3 at the maximum).

many sounds were localized correctly, chance level 1/247

= 0.4%), and the relative evidence at the correct position

(a∗,e∗), which is computed as
E(a∗,e∗)−mean(E)

max(E) , where E is the

accumulated position evidence in approach 1 or the BSDV

similarity in approach 2. The latter measure describes how

much evidence was given to the true position relative to

the evidence given to all positions and the position which

received maximum evidence. This is relevant if spectral

cues are combined with other cues (e.g. binaural cues), that

provide an independent estimation of the source position.

A. Overall performance

Here we report the results of the proposed algorithms on

our test set which are summarized in Table I. The first major

result is that both approaches provide a decent amount of

information about the position of the sound source regar-

ding it’s azimuth and elevation angle. The second approach

(BSDV matching) produces substantially better precision for

both azimuth and elevation angle estimation. However, the

spectral cue approach is able to concentrate more of the

position evidence on the correct spot. Both approaches have

higher elevation errors than azimuth errors. The hit-rate is 1

in 5 for approach 1 and even 1 in 4 for approach 2 which is

far above chance rate.

B. Comparison of single cues

Now we want to analyze the impact of the different

spectral cues for the localization performance. In biological



Approach azi. error ele. error correct pos. evi.

Spectral cues 16.3 18.0 20.0% 0.78
BSDV match 10.7 13.7 26.8% 0.71

TABLE I

LOCALIZATION PERFORMANCE OF THE TWO APPROACHES.
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Fig. 7. Mean elevation error for different frequency subbands on their
own. Labels on the horizontal axis denote center frequencies for this band.

articles it is often argued (e.g. [7], [9]) that notches (minima

in the BSDV) are the main features for spectral localization.

We now compare individual contributions of single cue types

and also their frequency ranges.

When we look at the contribution of spectral cues from dif-

ferent frequency bands (5 bands with 20 frequency channels

each) we observe a trend towards higher performance of the

higher frequency bands (see Fig. 7). This is observable for

mean elevation error, hit percentage and evidence at correct

position. We could not observe a clear trend for the azimuth

angle, though.

An analysis of the relative importance of the four basic

types of spectral cues (peaks, notches, max and min slope)

shows that peaks are on their own the most useful spectral

cues (mean elevation error of 25°), while notches are the least

useful (mean elevation error of 29°, other cues in between).

This is in clear contrast to biological data which suggests

that in animals and humans, notches are the prime sources

of elevation information. We do not know, whether this is

due to the design of our outer ears or due to some difference

in the way we compute and process spectral cues.

C. Pure elevation estimation

Hörnstein et al. [5] used binaural cues to estimate a

sound’s azimuth position, while the elevation was estimated

by using spectral cues. Binaural systems can provide a very

good azimuth estimation [13], so that we can assume that the

azimuth position is roughly given (e.g. via binaural cues).

The results for the localization were now re-investigated

under the assumption that the azimuth position is already

known. In this case the performance of the elevation estima-

tion improves from a mean error of 18.0° without azimuth

information down to 12.1° elevation estimation error (and

44% hit rate) when external azimuth information is available

(data for approach 1).

Approach azi. error ele. error correct pos. evi.

Spectral cues 15.0 17.5 31% 0.79
BSDV match 8.4 9.7 42% 0.65

TABLE II

LOCALIZATION PERFORMANCE OF THE TWO APPROACHES FOR THE

SECOND HEAD DESIGN.

Fig. 8. Second hardware platform tested.

D. Alternative head/ear hardware

For evaluating if our approach is valid also on other

hardware systems we repeated our experiments on a different

robot head. We used a human-like mock-up head with

(slightly oversized) ears that closely model the human ear

(see Fig. 8). Test conditions were similar to the original

test, but with a finer (5°) spacing of head bearings. We

used identical parameter settings. The results of these tests

are shown in Table II. We can see that the performance is

similar to the results on the other robot head, but with a

higher precision, which might be due to the more elaborate

ear shape.

E. Computational effort

The proposed algorithms are computationally very ef-

ficient. Starting from a basic binaural sound localization

system for azimuth estimation, only a moderate amount of

extra computation is required. Therefor our approach is in

this regard far more efficient than adding another pair of

microphones to determine a source’s elevation angle. Of

the two approaches presented, the second one (using the

BSDVs directly) is conceptually simpler but computationally

more costly, due the comparison of the current BSDV with

templates for all positions. In the other approach extracting

the spectral cues is done quickly and the mapping from those

(sparse) cues to position estimates can be done via a simple

look-up table. In any way, both approaches easily run in

real-time on a single standard desktop computer.

IV. SUMMARY AND CONCLUSION

In this paper we have introduced two approaches for sound

source localization that use binaural spectral differences to



determine a sound’s azimuth and elevation position. While

the localization precision is not very high, it can still pro-

vide valuable information about azimuth and elevation. The

approaches work using only two microphones and have a

very low computational overhead when taking a standard

binaural azimuth estimation system as a baseline. We have

also shown that both approaches work on two different

hardware platforms (with identical parameter settings). In

contrast to related approaches we can make use of spectral

cues in a larger frequency range, the design of the robot’s

head and ears is not constrained and no manual intervention

is needed to train the system (i.e. the same automated

calibration set-up can be used for different robots). If an

online training signal is available (e.g. via vision) it would

even be possible to perform a continuous adaptation of the

system to the current environmental conditions. Our system

also provides a combined azimuth and elevation estimation

and can therefore be easily integrated with for example

binaural localization methods. In a previous paper [2] we

have shown that binaural and spectral cues provide at least

partially orthogonal information. We have also implemented

our approach in an online system that uses both binaural and

spectral cues.

In this work we have compared two variations of spectral

cues - one that uses the complete binaural spectral difference

vector and one that extracts salient features like peaks or

notches from this vector. The latter approach is suggested

by biological data but turned out to be less efficient than

matching the complete BSDV. The probable reason is that

using the full BSDV allows the algorithm to exploit more

spectral information than just using a sparse set of spectral

features. On the other hand, the sparse spectral cues approach

was computationally lighter, more sparse in its position

estimations, and had a higher relative evidence at the correct

position which makes it attractive for combination with other

approaches. A potential advantage we didn’t investigate is

that spectral features are much more localized in frequency

so that concurrent, partially overlapping sounds might have

a less disturbing impact.

We also found that at least for our human-inspired ear

designs the relevant spectral cues were not limited to spectral

notches but all four types of cues contributed substantially.

In accordance with biological data we saw a larger impact

of higher frequencies.

The algorithm would probably be improved by optimizing

the range of frequencies that are used in the GFB, e.g. having

more frequency channels for the higher frequency bands.

Along a different line of research it is conceivable to

optimize the shape of ears to provide the best possible

spectral cues. This process can for example be based on

evolutionary design optimization.
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