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Abstract

In the brain, both neural processing dynamics as well as the perceptual interpretation of a
stimulus can depend on sensory history. The underlying principle is a sensory adaptation to the
statistics of the input collected over some timespan, allowing the system to tune its detectors,
e.g. by better sampling the input space and adjusting the response. Here, we show how a model
for adaptation in visual motion processing can be set up fromfirst principles that uses a gener-
ative formulation and casts the problem of adaptation in terms of optimal estimation over time.
The model leads to an online adaptation of velocity tuning curves, inducing shifts in the velocity
tuning and changes in the tuning curve widths that are compatible with observations from physi-
ological experiments on macaque MT neurons. We also show howsuch an adaptation leads to a
greater computational efficiency by a better sampling of the velocity space, requiringless motion
detectors to achieve a desired level of estimation accuracy.

Keywords: motion estimation, velocity tuning, adaptive system, stochastic dynamical system,
online optimization, maximum posterior solution

1. Introduction

Biological sensory systems adapt to the history of the sensory input over a variety of timescales
and several types of modalities. The adaptation is especially prominent after prolongued expo-
sure to visual stimuli of a particular type, like orientation, texture, contrast or motion, and leads
to a systematic bias in the perception or the estimation of the stimulus variables.

The function of this adaptation has been studied for a long time. In many cases, it leads to
illusory aftereffects that come along with an increased discrimination performance, like in the
cases of the orientation tilt illusion [1] or the waterfall illusion [2]. In [3], it is discussed to
which extent the findings are consistent with a decoding state after the adapting sensory units
that is aware/ is not aware of the sensory adaptation, with the conclusion that a fixed, “unaware”
decoder can account for the measured effects. However, this does not explainhow and whythe
detectors adapt, but only the effect that an adaptation has on a subsequent internal evaluation.
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In this paper, we directly look at a functional explanation for the adaptation dynamics of the
sensory units. We assume that the benefits of the adaptation would be a temporarily improved
sampling of the sensory input space, which would lead to a better performance in terms of sensory
estimation and/or discrimination accuracy.

Let us consider the case of basic motion estimation. For a biologically consistent setting
of a model for low-level motion processing, a discrete number of motion detectors (e.g. corre-
sponding to motion selective cells) is required that somehow covers the to-be-observed sensory
range appropriately. How should they sample the velocity space? In particular, for motion we
have the problem that the potential maximal motion range needs to be very large, e.g. in order
to be able to capture large visual displacements originatedfrom head or eye movement, but that
the sensitivity for relative motion differences also needs to be very high to be able to detect fine
motion structures within the global displacement. The immediate consequence would be a very
fine sampling of velocity space with a very large number of detectors. A more economic solution
would be to use a reduced set of detectors which adapt to the global displacement and use their
resources to sample velocity space more finely around it to increase the discriminability of the
remaining relative motion. An observation that supports this idea is that from psychophysics; it
is well known that the presence of a reference frame decreases motion discrimination thresholds
[4].

In physiological studies, motion adaptation is found on a timescale of tens of msec to several
seconds. In [5], it is shown that the direction tuning of single motion-sensitive neurons from
macaque area MT (medio temporal cortex) changes within about 40 sec. In [6], it is shown that
also the speed tuning is affected by the stimulus history and adapts to it in a timeframe of about
40 msec. The two findings suggest that response characteristics of motion detectors immediately
and continuously adapt to a stimulus, and that as a consequence single motion detectors (in this
case single neurons) exhibit a modified motion preference, measurable by a change of the form
of their motion tuning curve.

The general idea of motion adaptation is visualized in Fig. (1). In (A), we sketch a system
with a dense coverage of the motion space (exemplarily, onlyvelocity magnitude but no velocity
direction is indicated in the figure) by a large number of equidistributed motion detectors. Each
motion detector has a tuning curve (highlighted in red for a single detector) centered around a
sampling point in velocity space. In (B), we show a similar system with an insufficient coverage
of the velocity space. Such a system will be deficient in termsof motion estimation accuracy.
Only by adapting its motion detectors, it will be able to improve its estimations. This is shown
in (C) for the velocity sampling points. The tuning curves move closer to the object velocity and
cover that part of the velocity space better. In (D), the responsiveness of the tuning curves is
changed by adaptation.

In a generative setting, the target of the system is to maximise the probability of explaining
the input. In the particular case of motion estimation, thisoptimization leads in a straightforward
way to a sensory adaptation that concentrates a set of motiondetectors on the relevant velocities
of a scene, i.e., on the statistics of the current stimulus. In this paper, we show how the adaptation
dynamics of such a system can be derived from a straightforward probabilistic formulation. We
also show that the adaptation increases the motion estimation accuracy allowing the system to
rely on far less motion detectors to achieve results that arecomparable to a dense, but non-
adaptive sampling. In consequence, the derived detector adaptation leads to attracting shifts in
the speed and direction tuning of motion detectors on a shorttimescale, similar to those found
experimentally in [5], [6].
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Figure 1: (A) Set of velocity-tuned neurons with velocity tuning curves densely sampling the entire velocity space. (B)
Velocity preferences coarsely distributed in velocity space but (C) beingsmartly adaptive to be able to cluster around
some relevant velocities[7] and (D) to be able to tune the responsiveness [6]. See textfor further details.

2. The Probabilistic Filter Model for Motion Estimation

As a basis for our model, we use a modification of the probabilistic filter approach for motion
estimation presented in [8]. We assume that the overall system describes a moving input by
using velocity distributionsP(vt

x) for discrete timestepst at retinal positionsx for velocitiesv in
a continuous velocity space. However, the velocity distributions are approximated by a limited
number of discrete velocity samples at the sampling pointsh ∈ H. (In a sense, the motion field
is sampled by a set of motion detectors each characterized bya fixed positionx and a tuning
velocityh ∈ H.)

What we are interested in, however, is not the velocity at a single position but thevelocity
field Vt := {vt

x}x, which is the set of the velocities at all positions, and its (posterior) probability
P(Vt|Y1:t) given all visual inputsY1:t = {Y1, . . . ,Yt} until timestept. In an incremental motion
estimation process, the estimated velocity fieldVt is influenced by the past velocity fields mean-
ing that the old velocity estimations are used to bias the next ones,P(Vt|Y1:t) → P(Vt′ |Y1:t′ ) →
P(Vt′′ |Y1:t′′ ) etc. Therefore, incremental motion estimation allows to include the sensory history
(e.g., the past input images), which leads to faster and moreaccurate estimations for continuous
inputs.

The most important assumption for including the sensory history is spatiotemporal consis-
tency. Intuitively, this can be understood by looking at the deterministic motion of particles at
positionx with velocitiesvt

x, which for the next timestept′ move towards positionx′. At the next
timestept′ and for small time intervals of length∆t = (t′ − t), it is expected that the velocities
obeyvt

x ≈ vt′
x′ and that the particles location follow approximately

x′ ≈ x + ∆t vt
x ≈ x + ∆t vt′

x′ , (1)

i.e., the particles move along with their corresponding velocities (for notational simplicity, in
3



the following we will omit the∆t). For a probabilistic modeling in terms of velocity transitions
φ(vt′

x′ , v
t
x) from current to next timestep velocities, from (1) it follows that, without incorporation

of further knowledge from new measurements, there is a spatiotemporal coupling in the sense
that

φ(vt′
x′ , v

t
x) ≈ fx(x′ − vt′

x′ , x) ft(vt′
x′ , v

t
x) , (2)

with e.g. Gaussiansfx, ft, so that the probability for an estimated velocityvt′
x′ increases when the

locations and the velocities obey (1). Since also other locations and velocities fromt can fulfill
(1) approximately, we additionally have to sum over all these possibilities arriving at

φ(vt′
x′ ,V

t) ≈
∑

x

fx(x′ − vt′
x′ , x) ft(vt′

x′ , v
t
x) . (3)

Although the velocity transitionsφ(vt′
x′ ,V

t) prefer spatiotemporal consistency, the final veloc-
ity estimate is able to capture spatiotemporal velocity changes since new measurements induce
information about accelerating and decelerating stimuli.

For a generative model that takes advantage of the sensory history, we express the posterior
of the entire estimated velocity field in form of a probabilistic filter model [20]. In a Bayesian
manner, we take the last velocity estimate (the last posterior at timet) P(Vt|Y1:t; H) to calculate
the next expected velocity estimate (the predictive prior at time t′) P(Vt′ |Y1:t; H). This is com-
bined with the likelihood that the next timestep sensory input Yt′ := {It′ , It} (with the next and the
last input imagesIt′ andIt) can be explained given a velocity estimate, to gain the nextposterior
via

P(Vt′ |Y1:t′ ; H) ∝ P(Yt′ |Vt′ ; H)
︸         ︷︷         ︸

Measurement likelihood

× P(Vt′ |Y1:t; H)
︸           ︷︷           ︸

Predictive prior

. (4)

The likelihood can be expressed via

P(Yt′ |Vt′ ; H) =
∏

x′
ℓ(Yt′ , vt′

x ; H) . (5a)

ℓ(Yt′ , vt′
x′ ; H) =

∑

h∈H
δ(vt′

x′ − h) ℓ(Yt′ , vt′
x′) . (5b)

ℓ(Yt′ , vt′
x′) = fℓ(It′

x′ , I
t
x′−vt′

x′
; θℓ) , (5c)

with likelihood-specific fixed parametersθℓ. That means, that the overall likelihood factorises
into position-specific likelihoods (5a). Due to (5b) the velocity parameterization at each position
is restricted to the sampling velocitiesh ∈ H, and with (5c) the local likelihood is gained by the
patchwise comparison of the current and the future input images around positions compatible
with the velocity hypothesisvt

x, as proposed e.g. in [21]. TheIt′
x′ and It

x are image patches
taken from the imagesIt′ andIt with a fixed window and anchored around positionsx′ andx,
respectively. In (5c) we have again made use of the spatiotemporal consistency equation (1),
assuming that, for a correct motion on the image, the image patches move accordingly, such that

It′
x′ ≈ It

x′−vt′
x′
. (6)
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The transition to get the predictive prior is done by

P(Vt′ |Y1:t; H) =
∑

Vt

P(Vt′ |Vt; H)P(Vt|Y1:t; H) , (7)

P(Vt′ |Vt; H) =
∏

x

φ(vt′
x′ ,V

t; H) ,

φ(vt′
x′ ,V

t; H) =
∑

h∈H
δ(vt′

x′ − h) φ(vt′
x′ ,V

t) ,

φ(vt′
x′ ,V

t) =
∑

x

fx(x′ − vt′
x′ , x; θx) ft(vt′

x′ , v
t
x; θt) , (8)

with prediction-specific parametersθx, θt. Here, we have assumed that the predictive prior fac-
torises spatially and that only the sampling velocitiesh ∈ H are allowed. The functionsfx and ft
express the “lateral” propagation of information from the last to the current timestep (cf. Sec. 4
for more detailed information).

Inserting (7) into (4) leads to the posterior

P(Vt′ |Y1:t′ ; H) ∝ P(Yt′ |Vt′ ; H)
∑

Vt

P(Vt′ |Vt; H)P(Vt|Y1:t; H) , (9)

which factorises spatially, such that using (5) and (8) we obtain

P(Vt′ |Y1:t′ ; H) =
∏

x′
P(vt′

x′ |Y1:t′ ; H) , (10)

with the single velocity posterior

P(vt′
x′ |Y1:t′ ; H) ∝ ℓ(Yt′ , vt′

x′ ; H)
∑

Vt

∑

x

φ(vt′
x′ ,V

t; H) P(Vt|Y1:t; H)

=
∑

h′∈H
δ(vt′

x′ − h′) fℓ(It′
x′ , I

t
x′−vt′

x′
; θℓ)
∑

x

∑

vt
x

∑

h∈H
δ(vt

x − h) ×

fx(x′ − vt′
x′ , x; θx) ft(vt′

x′ , v
t
x; θt)

︸                                ︷︷                                ︸

φ(vt′
x′ ,v

t
x) defined in (2)

P(vt
x|Y1:t; H) . (11)

Eq. (11) is the probabilistic filter description for the transition t → t′ of the velocity field distri-
bution based on a common, discrete set of velocity samplesh ∈ H used at all positionsx as well
asx′. We further define

φ(vt′
x′ , v

t
x; H) :=

∑

h∈H
δ(vt′

x − h) φ(vt′
x′ , v

t
x) . (12)

In summary, using definition (12), we now can introduce a compact notation

P(vt′
x′ |Y1:t; H) :=

∑

x

∑

vt
x

φ(vt′
x′ , v

t
x; H) P(vt

x|Y1:t; H) , (13)

as the single velocity predictive prior, i.e., the velocityprediction for the next timestept′ gained
by propagation of the last posterior and using only the measurementsY1:t until t, which will be
used in the derivations of the next section.
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3. Online Adaptation of the Velocity Tuning

The incremental filtering uses the sensory history to adapt the motion estimations. In addi-
tion, we can consider different parameter sets of the velocity estimation process to be adaptive
at every time stept. Following the argumentation from the introduction and motivated by the
biological findings, we concentrate on the tuning curve positions and tuning curve widths of the
motion detectors.

In the system introduced in Sec. 2, the velocity detecting units measure the current velocity
estimate directly from the input images as expressed byℓ(Yt′ , vt′

x′; θℓ) in (5). The functionδ(vt′
x′ −

h) from (5) restricts the motion detectors to velocitiesvt′
x′ = h, so that we assume each motion

detecting unit to be realised as follows

ℓ(Yt′ , vt′
x′ = h;σ) =

1
√

2πσ
exp
(

− 1
2σ2

∑

y′
w(y′ − x′)(I t′

y′ − I t
y′−h)2

)

, (14)

i.e., their velocity tuning curve is Gaussian-shaped with acenter ath and standard deviation
θℓ = σ. Here,w(y′ − x′) is a Gaussian weighting function of the spatial neighborhood around
x′ andI t

x is the intensity of the inputIt at positionx. The image consists ofX discrete 2D pixel
positionsx. We now assume the motion estimation to be based on a set ofN motion detecting
units with corresponding velocity sampling points (resp. tuning curve centers)H = {hn}n and
standard deviationsΣ = {σn}n that parameterise the tuning curve widths. Both, the tuningcurve
centers as well as the tuning curve widths are allowed to be adaptive and can adjust to the current
and past motion estimation statistics of the input.

The temporal adaptation of the parameter sets{H,Σ} is realised via an extended online vari-
ant of the Expectation-Maximisation algorithm described in the next section. For this purpose,
we introduce additional priors for the parameters,P(H) andP(Σ), respectively, to keep the pa-
rameters in suitable adaptation ranges.

3.1. Maximum posterior solution
We consider the velocity tuning curve centershn and the tuning curve widthsσn to be adap-

tive at every time step. They are parameters of the velocity estimation process, which can be
optimised via an approximate Expectation-Maximisation (EM) mechanism.

The target is to maximise the log probability function lnP(Y1:t|H,Σ) of the dataY1:t up to
time t given the parametersH,Σ with respect to the optimal parametersHt′ ,Σt′ for the next time
stept′. The likelihood function is given by

P(Y1:t|Ht,Σt) =
∑

Vt

P(Y1:t,Vt|Ht,Σt) . (15)

W.l.o.g. and for derivation purposes, in the following we will assume that the same velocity
sampling pointsH and standard deviationsΣ are used over the entire visual field. That is, the
sampling points and standard deviations are independent onthe positions along the visual field
for which the velocity detection units are responsible. Since the probabilistic motion model
given in (11) provides the posterior distributionP(Vt|Y1:t; Ht,Σt) only up to timet, an online EM
algorithm is applied that only considers the expected valueunder the posterior given only past
data for parameter optimisation (instead of the complete-data log likelihood). The expectation
for the log likelihood evaluated for the parameter setsH,Σ, denotedQHt ,Σt (H,Σ), is given by

QHt ,Σt (H,Σ) =
∑

Vt

P(Vt|Y1:t; Ht,Σt) ln P(Y1:t,Vt|H,Σ) . (16)
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Introducing suitable priors for the parametersP(H) andP(Σ) we can calculate successively
these parameters by maximising the expectation while considering the priors (which is called
maximum posterior solution). This yields

{Ht′ ,Σt′ } = argmaxH,Σ
(

QHt ,Σt (H,Σ) + λh ln P(H) + λσ ln P(Σ)
)

, (17)

with λh andλσ being weighting factors to adjust the influence of the parameter priors.

3.2. Priors for the tuning parameters
The prior for the set of velocity sampling points is chosen asa product of Gaussian-like

exponentials

P(H) ∝
∏

n

exp
(

−1
2
||hn − hn,0||2

)

. (18)

This prior becomes maximal ifH = H0, with theN reference sampling pointshn,0 ∈ H0 sitting
on a squared 2D-grid distributed equidistantly in velocityspace around zero. This prior prevents
the velocity samples to get too close together and to collapse into one single velocity sample
point.

The prior for the set of standard deviations is chosen as a product of Gaussians such that the
sensitivities of the velocity detection units do not becometoo diverse during adaptation and keep
being around some reference valueσ0

P(Σ) ∝
∏

n

1
√

2πσn

exp
(

− 1
2σ2

n
||σn − σ0||2

)

. (19)

3.3. Derivation of the adaptation rules
Next, we derive the adaptation rules by an approximate maximum posterior solution. To this

end, the following partial derivatives with respect to the parameter setsH andΣ have to be set to
the zero vector

∂QHt ,Σt (H,Σ)
∂H

+ λh
∂ ln P(H)
∂H

!
= 0 , (20)

∂QHt ,Σt(H,Σ)
∂Σ

+ λσ
∂ ln P(Σ)
∂Σ

!
= 0 . (21)

Starting with the partial derivative∂Q/∂H and assumingP(Y1:t|H) to be independent of the
parametersH, we obtain

∂Q
∂H
=
∂

∂H

∑

Vt

P(Vt|Y1:t; Ht) ln P(Vt|Y1:t; H) +
∂

∂H

∑

Vt

P(Vt|Y1:t; Ht) ln P(Y1:t|H)

︸                                       ︷︷                                       ︸

=0

. (22)

Using the factorisation assumption (10) and replacing the posterior with fixed parameters
with the abbreviationα(vt

x; Ht) = P(vt
x|Y1:t; Ht,Σt) simplifies the derivative as follows

∂Q
∂H

=
∂

∂H

∑

Vt

∏

x

α(vt
x; Ht) ln

∏

x

P(vt
x|Y1:t; H) (23)

≈ ∂

∂H

∑

x

∑

vt
x

α(vt
x; Ht) ln P(vt

x|Y1:t; H) (24)

=
∑

x

∑

vt
x

α(vt
x; Ht)

∂

∂H
ln

1
Z
ℓ(Yt, vt

x; H)P(vt
x|Y1:t−1; H) . (25)
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Here,P(vt
x|Y1:t; H) is the single velocity predictive prior from (13) and the quantity Z is a

normalisation constant in order to fulfil
∑

vt
x
P(vt

x|Y1:t; H) = 1. Next, we assume the adaptation of
the velocity sampling to have negligible influence on the predictive prior, such that it is calculated
with the last velocity samplingHt−1, P(vt

x|Y1:t−1; H) ≈ P(vt
x|Y1:t−1; Ht−1). This approximation

simplifies the derivative and we arrive at

∂Q
∂H
=
∑

x

∑

vt
x

α(vt
x; Ht)

( ∂

∂H
ln

1
Z

︸    ︷︷    ︸

=0

+
∂

∂H
ln ℓ(Yt, vt

x; H) +
∂

∂H
ln P(vt

x|Y1:t−1; Ht−1)
︸                         ︷︷                         ︸

=0

)

. (26)

Now, the adaptation tries to tune the parameters of the velocity detection units such that the
expectation of the new observation likelihoods under the past posterior is maximised only but not
the expectation of the transition probability. Hence, the adaptation is more sensitive to changes
in the velocity statistics of the visual scene.

In the following, we take the remaining term from (26) and insert the observation likelihood
(5). Evaluating theδ-functions that constrain the velocitiesvt

x to the discrete sampling pointshn

leads to a simplified partial derivative

∂Q
∂H

=
∂

∂H

∑

x

∑

vt
x

α(vt
x; Ht) ln

∑

n

δ(vt
x − hn)ℓ(Yt, vt

x) (27)

≈
∂

∂H

∑

x

∑

n

α(vt
x = ht

n; Ht) ln ℓ(Yt, vt
x = hn) . (28)

If we specify the observation likelihood (5) withθℓ = σn as given in (14) and linearise it with
the first order Taylor expansion, similar to the likelihood given in [18] using the Lucas-Kanade
approach [19],

ℓ(Yt, vt
x = hn) =

1
√

2πσn

exp
(

−
1

2σ2
n

∑

y

w(y − x)(I t
y − I t−1

y−hn
)2
)

(29)

≈ 1
√

2πσn

exp
(

− 1
2σ2

n
(∇⊤I t

xhn + I t
t,x)2
)

, (30)

we arrive at the final expression for the derivatives ofQ

∂Q
∂H

=
{ ∂Q
∂hn

}

n
, (31)

∂Q
∂hn

=
∑

x

α(vt
x = ht

n; Ht)
∂

∂hn
ln ℓ(Yt, vt

x = hn) (32)

=
∑

x

α(vt
x = ht

n; Ht)
∂

∂hn
ln

1
√

2πσn

exp
(

− 1
2σ2

n
(∇⊤I t

xhn + I t
t,x)

2
)

(33)

= − 1
σ2

n

∑

x

α(vt
x = ht

n; Ht)(∇⊤I t
xhn + I t

t,x)∇I t
x . (34)

The intensity gradient∇I t
x =
[

Ix,x, Iy,x

]⊤
denotes spatial derivatives of the image intensities in

x- andy-direction andI t,x denotes temporal derivatives, respectively, taken at position x. Since
for the computation of the spatial derivatives in (30) the images are pre-smoothed with the same
Gaussian weightingw(y − x) as used in (29), we neglect the weighting in the linearisation (30).
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Next, we need the derivatives of the prior

∂ ln P(H)
∂H

=
{∂ ln P(H)
∂hn

}

n
, (35)

∂ ln P(H)
∂hn

=
∂

∂hn
ln
∏

n

exp
(

−1
2
||hn − hn,0||2

)

= (hn,0 − hn) . (36)

Finally, in order to maximise the objective function definedin (17)

{Ht′ } = argmaxH
(

QHt ,Σt (H,Σ) + λh ln P(H)
)

, (37)

we insert the derivatives (34) and (36) into the constraint (20)

∂QHt ,Σt (H,Σ)
∂H

+ λh
∂ ln P(H)
∂H

!
= 0 , (38)

{∂QHt ,Σt (H,Σ)
∂hn

+ λh
∂ ln P(H)
∂hn

}

n

!
= 0 , (39)

{

− 1
σ2

n

∑

x

α(vt
x = ht

n; Ht)(∇⊤I t
xhn + I t

t,x)
[

∇I t
x

]

+ λh
[

hn,0 − hn
] }

n

!
= 0 , (40)

and solve forhn = ht′
n to get the adaptation rule for the set of new velocity sampling pointsHt′

as follows

ht′
n = 2k





∑

x
αn(I k,t

x,x)2 + λhσ
2
n

∑

x
αnI k,t

x,xI k,t
y,x

∑

x
αnI k,t

x,xI k,t
y,x

∑

x
αn(I k,t

y,x)2 + λhσ
2
n





−1 


−
∑

x
αnI k,t

t,x I k,t
x,x + λhσ

2
n

hx0

2k

−
∑

x
αnI k,t

t,x I k,t
y,x + λhσ

2
n

hy0

2k




,(41)

using the abbreviationαn = α(vt
x = ht

n; Ht
n). Since we have linearised the exponent of the

observation likelihood in (29) the adaptation rule only holds for small velocities. To circumvent
this problem, for eachht

n we downsample the derivatives of the image intensities witha Gaussian
pyramid [9] to a proper scalek. The scale depends on the amplitude of the velocity samplingpoint
||ht

n|| such that the linearisation assumption of small movements holds, likeround(||ht
n||/2k) = 1

with k = 0, ...,K.
The derivation of the update rules to achieve an adapted set of standard deviationsΣt′ works in

an analogous way. The standard deviations enter the formulations in the likelihoodℓ(Yt, vt
x; H,Σ).

In order to maximise the objective function defined in (17) with respect toΣ,

Σt′ = argmaxΣ
(

QHt ,Σt (H,Σ) + λσ ln P(Σ)
)

, (42)

we then insert the derivatives

∂ ln P(Σ)
∂Σ

=
{∂ ln P(Σ)
∂σn

}

n
, (43)

∂ ln P(Σ)
∂σn

=
∂

∂σn
ln
∏

m

1
√

2πσm

exp
(

−
1

2σ2
m
||σm − σ0||2

)

= −
σ2

0

σ3
n
, (44)
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and, analogous to eq. (31),

∂Q
∂Σ

=
{ ∂Q
∂σn

}

n
, (45)

∂Q
∂σn

=
∑

x

α(vt
x; Ht)

∂

∂σn
ln ℓ(Yt, vt

x; H,Σ) (46)

=
∑

x

α(vt
x; Ht)

∂

∂σn
ln

1
√

2πσn

exp
(

− 1
2σ2

n
(∇⊤I t

xhn + I t
t,x)

2
)

(47)

=
1

σ3
n

(∑

x

α(vt
x; Ht)(∇⊤I t

xhn + I t
t,x)

2 −
∑

x

α(vt
x; Ht)σ2

n

)

, (48)

in the constraint (21)

∂QHt ,Σt (H,Σ)
∂Σ

+ λσ
∂ ln P(Σ)
∂Σ

!
= 0 , (49)

{∂QHt ,Σt(H,Σ)
∂σn

+ λσ
∂ ln P(Σ)
∂σn

}

n

!
= 0 , (50)

{ 1

σ3
n

(∑

x

α(vt
x; Ht)(∇⊤I t

xh + I t
t,x)

2 −
∑

x

α(vx; Ht)σ2
n

)

− λσ
σ2

0

σ3
n

}

n

!
= 0 , (51)

and obtain the adaptation rule for the set of new standard deviationsΣt′ as follows

(σ2
n)t′ =

(∑

x

α(vt
x; Ht)(∇⊤I k,t

x ht
n/2

k + I k,t
t,x)2 − λσσ2

0

)

/
(∑

x

α(vt
x; Ht)

)

. (52)

3.4. Interpretation of the adaptation rules

With (41) and (52), we have gained an explicit iterative description for the calculation of the
next optimal sampling pointsHt′ and standard deviationsΣt′ given the current set of adaptive
(Ht,Σt) and fixed (λh, λσ) parameters. It takes into account the spatial statistics (

∑

x ...) of the
current posterior distributionα(vt

x; Ht) = P(vt
x|Y1:t; Ht,Σt) to adapt the velocity tuninght′

n ∈ Ht′

and the standard deviationσt′
n ∈ Σt′ of eachn = 1 . . .N of the velocity detection units.

The posterior probabilitiesα(vt
x; Ht) can be interpreted as a model for the neural activity

of velocity sensitive MT neurons. Their responses are driven by the responses of the motion
detection unitsℓ(Yt′ , vt′

x′ = h;σ) which can be interpreted as a model for velocity tuned V1
cells. The proposed adaptive Bayesian filter (11) realises aspatiotemporal dynamics that can
be interpreted as a model for the dynamics of the neural MT activity via a strong closed-loop
feedback interaction.

The adaptation of the velocity detection units (V1 cells), namely adaptation of preferred
velocities Ht′ and sensitivity rangeΣt′ , is driven by the current probability of the posterior
α(vt

x; Ht) (activity of MT cells), the current spatiotemporal luminance changes in the visual in-
put (∇⊤I k,t

x , I
t
t,x) and weak (λh andλσ are small) time-independent priors (H0,Σ0) on the tuning.

This leads to an adaptation of the preferred velocities (41)and changes the sensitivity (52) of the
MT cells such that they best explain the luminance changes inthe visual input and simultane-
ously maximise their activity. The priors lead to a trade-off between a neural population of MT
cells with their preferred velocities being equally distributed in velocity space versus MT cells
with their preferred velocities being distributed around the statistically relevant velocities. The

10



clustering around some certain velocities influences the adaptation of the sensitivity range of the
corresponding neurons and vice versa. The dependencies between sampling and sensitivity are
shown in the next section 4.

Since we assume the posterior to factorise locally (
∏

x ...) the updates are dependent on local
information only. For this reason, the update can be implemented efficiently in a purely parallel
way. The following pseudo-code shows the compact form of thederived adaptive spatiotemporal
filter suitable for an algorithmic implementation. All experiments described in the next section
have been realised in Matlab.

Algorithm 1 Pseudo-code for the adaptive spatiotemporal filter

Initialise the priorsα(v0
x) and the parameter setsH0, Σ0, λh, λσ.

for t = 1 toT do
for x = 1 to X do

Compute the posteriorα(vt
x; Ht) = P(vt

x|Y1:t; Ht,Σt) according to equation (11)
end for
Update the parametersht′

n and (σ2
n)t′ of the setsH andΣ for the next time stept′

according to equations (41) and (52).
end for

4. Experiments

What is the effect of the adaptation rules derived in the last section? Consider the probabilistic
filter from (11) without adaptation, i.e., keeping theH fixed. In this case, it is sensible to choose
theh to densely sample the entire velocity space, so that we have aset of velocity-detecting units
(neurons) with tuning curves completely covering the possible range of inputs, e.g. at regular
intervals in velocity space. With the adaptation accordingto (41) and (52), the tuning curves of
the velocity-detecting units cluster around the relevant velocities available in the input image,
providing a finer sampling around these velocities and different maximum values of response.
Fig. (1) (C) and (D) exhibits this idea. The bottom line is that the system will adjust its tuning
curves as soon as relevant velocities are measured, e.g. concentrating around the velocity of
a target object that appears in the visual field. To verify this hypothesis, we provide several
experiments.

4.1. Temporal effects of the adaptation process

First, we discuss the difference between the effects of the spatiotemporal integration of ve-
locity information realized by the recurrent filterwithout (see Fig. 2 (C)) andwith (see Fig. 2
(D),(E),(F)) additional adaptation of the parameters of the velocity detecting units. For this pur-
pose, we start with a moving bar as visual stimulus with a motion direction of 45◦ in relation to
the bar orientation and a constant speed of one pixel per frame as shown in Fig. 2 (A), similar
to the experiments done by Pack and Born [14]. With such a stimulus, the velocity detecting
units (neurons) that are responsible for the motion estimations along the edge of the bar are
heavily faced with the aperture problem [15]. To recover themotion from the population of
neurons, the population vector method is used [16]. We definethe velocity estimation result
of all detection units with an identical receptive field at position x as the meanµt

x of velocity
samplesh weighted by the strength of the response (the posterior probability α(vt

x = ht
n; Ht) ):

11
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A: visual stimulus: moving bar

C: fixed sampling D: adaptive sampling & sensitivity

B: average time course of 60 MT cells

E: adaptive sampling F: sampling & sensitivity history
t=1 t=2 t=6

t=10 t=40 t=75

t=100

t=100

adapted from [14]

Figure 2: (A) SnapshotsIt at different points in timet of a moving bar. Results for four different positions along the bar
(�,⊳,©,⊲) are given. The black arrows show the velocity estimations correspondent to simulation (D). (B) Average time
course of the activity of 60 MT cells of macaque brain for the stimulus shown in (A), adapted from [14]. (C) Simulated
time course of the velocity detection units responsible formarked positions (�,⊳,©,⊲). The polar plot shows the fixed
sampling of velocity space by 25 units with constant and equal sensitivity. (D) Simulations for the same units as in C but
now they are able to adapt their preferred velocity and sensitivity. The polar plot shows the adaptation result after 100
time steps. Eacharrow indicates the velocity a unit is most responsive for and thegray valuevisualises the sensitivity
(the brighter, the broader the tuning). (F) shows the history of adaptation at timest = 1, 2, 6, 10, 40, 75 correspondent to
(D). (E) Same simulation as in (D) butwithoutsensitivity adaptation.
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µ
t
x =
∑

nα(vt
x = ht

n; Ht)hn
1. If we assume a fixed sampling of the velocity space with 25 velocity

hypotheses the recurrent filter is able to completely disambiguate the motion ambiguities caused
by the aperture problem by integrating motion information from different points in space and
time using spatiotemporal transition probabilities as defined in (11). This is shown in Fig. 2 (C)
by the time course ofµt

x for four different positions along the barx = {�,⊳,©,⊲}. After ≈ 70
time steps the velocity estimates of all positions along thebar converge to the true motion. Sim-
ilar results without incorporating adaptation have also been shown by other models, e.g. [10],
using a non-probabilistic recurrent approach. However, the presented probabilistic model en-
ables to include adaptation in a formalised way. If we now allow the velocity detection units to
adapt their parameters according to (41) and (52), the sampling of the velocity space, the sensi-
tivity of the detection units and the time courses of the velocity estimatesµt

x change as shown in
Fig. 2 (D). One can see, that the detection units tuned to velocities surrounding the movement of
the stimulus adapt their velocity tuning to cluster around the true velocity of the moving bar (red
circle in Fig. 2 (D)). Hence, the velocity resolution aroundthis cluster center increases. Units
that are tuned to other velocities that are not able to explain the stimulus movement only slightly
adapt their velocity tuning. In the direct surrounding of the stimulus movement (red circle in
Fig. 2 (D)) the tuning widths become more narrow, in the near surrounding (green circle in Fig. 2
(D)) some tuning widths become even more narrow (some less narrow) compared to the direct
surrounding, and in the far sourrounding (blue circle in Fig. 2 (D)) the tuning widths broaden.
Looking at the temporal history of the adaptation process inFig. 2 (F) it can be seen, that within
the first t = 5, . . . , 10 time steps thevelocity tuninght

n adapts and afterwards (t = 5, . . . , 75)
the sensitivity rangeσt

n adapts. Aftert ≈ 80 no adaptation happens any more as long as the
stimulus does not change its movement. This adaptation process also influences the temporal
history of the velocity estimations as can be seen in Fig. 2 (D). The estimations converge much
faster (aftert ≈ 20 compared tot ≈ 70 for a fixed sampling) to one common estimate for three
different bar positionsx = {⊳,©,⊲} but under-estimate the motion direction about 4◦. Between
t = 20, . . . , 80 the estimates keep being together and decrease the under-estimate of the motion
direction because the differences in the tuning widths of the detection units become more and
more pronounced. After convergence a slight under-estimate of about 2◦ remains. At the begin-
ning the tuning widths are equalσ1

1:N =
√

0.02 (which is also chosen as the priorσ0
1:N =

√
0.02)

and after 100 time steps they differ betweenσ100
min =

√
0.005 andσ100

max =
√

0.04. For position
x = � the population coding now slightly over-estimates the truevelocity about−2◦ because
the samples are no longer symmetrically distributed aroundthe true velocity. In (E) the same
simulation as in (D) has been executed butwithout tuning width adaptation. The sampling con-
verges to the same distribution in velocity space as in (D) but the velocity estimates converge to
slightly different fixed points with increased under-/over-estimates of 3.5◦/2.3◦. Such estimation
offsets with a mean difference of 5.3◦ ± 10.5◦ has also been observed in the experiments by Pack
and Born [14] measuring the time course of the response of velocity sensitive MT neurons of
macaque brain. A copy of the result of their experiments is shown in Fig. 2 (B). As shown in
Fig. 2 (D), our spatiotemporal integration framework in conjunction with the proposed adaptive
velocity tuning method is able to simulate such temporal behavior in a qualitative way. It is im-
portant to mention, that the choice of the parametersλh, λσ, H0 andΣ0 influences the temporal

1In the terminology of the introduction, such a population-based estimation constitutes anawaredecoder, since it
relies on the adapted tuning curve centershn. An unawaredecoder would then correspondingly calculate the estimated
velocity usingµt

x =
∑

n α(vt
x = ht

n; Ht)h0,n.
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history of both the adaptation and the estimations.2
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Figure 3: (A) The first frame of the Yosemite sequence. (B) Thegrund truth optical flow for frame 13. The colors
visualise different movement directions and the saturation visualises the speed amplitude (the more saturation, the larger
the amplitude). (C-E) Simulation results of the optical flowfor 81, 25 and 16 velocity detection units per image location.
(F) Polar plots of the fixed sampling distribution in velocity space for three different numbers of detection units 16 (red),
25 (green) and 81 (blue). Each arrow shows a different sampling location. The absolute value of an arrow corresponds
to the speed and the direction of an arrow equals the motion direction. (G) Time course of the mean angular error and
the corresponding standard deviations shown by the error bars for three different numbers of detection units 16 (red), 25
(green) and 81 (blue). See text for further details.

4.2. Sampling number versus accuracy

Next, we analyse the accuracy of the estimation for fixed and adaptive velocity samples and
responsiveness. For fixedH andΣ but different numbers of detection units the results are shown
in Fig. 3. We compare the accuracy of the motion estimation for the Yosemite sequence as shown
in Fig. 3 (A) using fixed arrays of 81 (9x9) (blue), 25 (5x5) (green) and 16 (4x4) (red) velocity
detectors at each positionx covering the velocity space as shown in Fig. 3 (F). As a measure of
accuracy we use the mean angular error between ground truth optical flow (see Fig. 3 (B)) and
estimated flow as defined in [13]. Along 13 frames of the Yosemite sequence (see Fig. 3 (G)),
the performance increases along time because of the spatiotemporal couplings of the recurrent
filter, but drops for low numbers of velocity samples becauseof a too coarse coverage of velocity
space. The corresponding flow results after 13 time steps for81, 25 and 16 samples is shown in
Fig. 3 (C), (D) and (E), respectively.

2Here, we have chosen:λh = 5, λσ = 400, Σ0 =
√

0.02I and H0 equally distributed on a square grid between
h1 = (−2,−2)⊤ andh25 = (2, 2)⊤.

14



30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

30

210

60

240

90

270

120

300

150

330

180 0

0 2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

time steps

m
ea

n 
an

gu
la

r 
er

ro
r 

(°
)

 

 
16 adaptive units

25 adaptive units

81 adaptive units

min error nonadaptive units: 12.69°
min error: 18.52°
min error: 12.79°
min error: 12.38°

A

B

C

D

E

F

G

colour code

Figure 4: (A) The first frame of the Yosemite sequence. (B) Thegrund truth optical flow for frame 13. The colors
visualise different movement directions and the saturation visualises the speed amplitude (the more saturation, the larger
the amplitude). (C-E) Simulation results of the optical flowfor 81, 25 and 16 adaptable velocity detection units per
image location. (F) Polar plots of the adaptable sampling distribution in velocity space for three different numbers of
detection units 16 (red), 25 (green) and 81 (blue) at time step 13. Each arrow shows a different sampling location. The
absolute value of an arrow corresponds to the speed and the direction of an arrow equals the motion direction. The gray
values visualise the sensitivity (the brighter, the broader the tuning). (G) Time course of the mean angular error and the
corresponding standard deviations shown by the error bars for three different numbers of detection units 16 (red), 25
(green) and 81 (blue). The dashed lines show the mean angularerrors for different sampling numbers after convergence.
See text for further details.

Now, we allow the parametersH andΣ to be adaptive and again have a look at the time
course of the mean angular error for different numbers ofadaptabledetection units. As can be
seen in Fig. 4 (G) the adaptation mechanism leads to velocitysamplings (see Fig. 4 (F)) that
smartly cluster around the velocities that best fit to the flowstatistics of the scene. Within about
10 frames, the system converges to small angular errors. For81 adaptable detection units the
mean angular error 12.38◦ slightly decreases, compared to the error 12.69◦ for 81 non-adaptable
detection units (the baseline shown as a black line in Fig. 4 (G)). For 25 adaptable detection
units the mean angular error 12.79◦ only slightly increases compared to 12.69◦ (see Fig. 4 (G)),
although the number of samples has been reduced dramatically by the factor of 81/25 = 3.24
(see Fig. 4 (F)). Not before the sampling number is reduced even more, like 16 samples, the
accuracy breaks down to a mean angular error of 18.52◦ but is still much better than the results
for 25 fixed samplings (compare to Fig. 3 (G)). This is also reflected in the results of the flows for
differently sampled motion detectors shown in Fig. 4 (C), (D) and(E) for the sample numbers 81,
25 and 16, respectively. What can also be observed is, that the adaptation leads to a spread of the
sensitivity (i.e., theσn’s) of the detection units. Sometimes, this happens in a way that the more
samples cluster around some region the more the sensitivitydecreases as shown in Fig. 4 (F). To
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conclude, the reduction of sampling numbers by a factor off ≈ 3 does not affect the accuracy
significantly, if the velocity detection units are allowed to adapt. Nevertheless, the computational
costs are reduced by the factorf 2 since the number of state variablesvx to be predicted to the
next time step influences the computational complexity quadraticallyX × N2.
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Figure 5: Optical flow results for a real world sequence at different timesteps (column A) with ground truth optical flow
(column B), estimated flow using the proposed adaptive filter(column C) and adaptation history of the velocity tuning
along time (column D). The different colors in (B) and (C) visualise different movement directions and the saturation
visualises the speed amplitude (the more saturation, the larger the amplitude). The different arrows in (D) visualise the
currently optimal velocity samples reflecting the motion statistics given by the input. See text for further details.

4.3. Multiple motions and movement changes
Finally, we tested the adaptive filter for optical flow estimation with a real world sequence

taken from a moving car [17] shown in Fig. (5) (A) (selected frames from the interval{22, ..., 34}
16



are shown). The ground truth optical flow shown in Fig. (5) (B)consists of the movement of the
static scene induced by the camera motion and the motion of the approaching car. Due to the
rapid changes of the camera motion the optical flow that corresponds to the background changes
quite heavily from frame to frame. The motion amplitude of the flow of the approaching car is
quite large compared to the amplitude of the background motion. Additionally, the amplitude of
the car flow increases quadratically because the shorter thedistance of an object is, the larger is
the amplitude of the projected movement3 and the larger the image region is that is covered by the
object flow. Despite of this highly dynamic image motion, Fig. (5) (C) shows that the proposed
adaptive filter is capable of estimating the optical flow using only 25 adaptable velocity-detection
units. This is also reflected in the time history of the sampling of the velocity space seen in
Fig. (5) (D). The adaptation keeps up with the changes of the motion statistics and gathers around
the preferred motions of the car and the background. Since the movement of the background is
small compared to the car motion the samplings responsible for the background gather around
zero velocity. Hence some are not visible in the plots of Fig.(5) (D) because the amplitude is to
small.

5. Discussion

5.1. Modeling level

We present a functional model of tuning curve adaptation formotion estimation units. No at-
tempt was made to model the single units with neurobiologically realistic units, as could e.g. be
done using models of spiking neurons. The reason is that we introduced the adaptation dy-
namics as a consequence of an online optimization on the parameters describing the neuronal
tuning curves of each unit, in order to directly show the implications of the optimization process
on these parameters (the motion tuning curve center and width) during the adaptation. Never-
theless, the considerations remain valid irrespective of adetailed neuronal model, if the single
motion detectors exhibit a smoothly varying response that is dominated by their underlying mo-
tion measurement and the adaptation drive. This is generally the case if the processing units
are not single neurons, but rather neuronal populations. Other authors (see e.g. [22]) have pro-
posed more detailed functional models for the motion estimation cascade through V1 and MT,
describing a motion measurement process including contrast gain control, but their models do
only address contrast gain adaptation.

5.2. Physiological plausibility

Our model can be interpreted in terms of a connectionist neural network composed of arti-
ficial “neurons” for each motion estimation unit, i.e., for each unit parameterized by a retinal
positionx of its receptive field, a tuning motion vectorhn and a tuning curve widthσn (following
the notation from Eq. (14)). Each motion estimation unit would be composed of a subpopulation
of several biological neurons with similar tuning properties, and the unit response would be the
averaged subpopulation response. In fact, the model has been implemented as a network with
as many neuronal units as image positions times the number ofvelocity sampling points, which
amounts e.g. to 316∗ 252∗ 81= 6450192 units for the Yosemite sequence when using 81 differ-
ent motion sampling points at each position. Each unit receives mainly two types of inputs: A

3This is similar to a nonlinear accelerating object that moves front-to-parallel to a static camera.
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driving input from sensory motion measurement that provides the amount of evidence from its
receptive field for the motion that the unit is tuned to, and lateral inputs that convey information
about the estimation confidence of the other units. The final motion estimation is contained in
the population of all different motion estimating units at each position, and extracted using a
population code.

5.3. Experimental evidence

The clearest benefit of adaptation is increased sensitivity. For input contrast adaptation, this
has been discussed in extent in numerous publications (see,e.g., [28] for a review). As an exam-
ple, light adaptation in the retina [23] enables to cover light intensity ranges that vary over several
orders of magnitude with detectors that are severely limited in their dynamic range. A similar
effect can be observed for adaptation-induced changes in contrast gain in motion area MT, see
e.g. [24] and [30], [31]. The findings support the notion of anadaptation mechanism that occurs
in MT and which emerges from intracortical interaction within MT and that depends specifically
from the tuning of the neurons that provide the inputs for theadaptation [30], in analogy to the
lateral propagation of information in our model. Physiological evidence of adaptation of motion
tuning curve parameters (motion direction, speed and tuning curve width) have only recently
been reported by a selected number of publications, see [5, 32, 6]. In [32], it was found that MT
neurons exhibit speed tuning adaptation, and that this adaptation enhances speed discrimination
around the speeds that currently prevail in the environment. To the contrary, the psychophysi-
cal evidence for improved perceptual performance as a consequence of response adaptation is
less clear. Adaptation, however, has been hypothesized to be the source for a number of well
measurable perception aftereffects [1, 2].

5.4. Adaptation and coding efficiency

Grounded on our approach, we propose to consider adaptationas an effect of the tendency of
a neural system to optimally cover a large sensory range withthe available limited resources. In
the case of motion estimation, the need to cover a large rangeof motion directions and velocities
at all retinal positions rapidly leads to a huge number of necessary motion detection units. We
have shown that with adaptation, this number can be considerably reduced (e.g. by a factor
of 3 without losing motion estimation performance, see Fig.4). In this sense, the adaptation
takes advantage of large-scale statistical properties of the simuli (i.e., properties that cannot be
measured by single units) to enable the system to improve coding efficiency, a principle that has
been orignally postulated by [26]. However, in our model an improved coding efficiency means
that the estimation of thestimulus propertiesis improved. In future, it might be interesting to
also include further criteria like metabolic efficiency (see e.g. [25] for a review on this topic
and [28] for the relation to visual adaptation) into the optimization process. In our model, the
consequences of the adaptation are that the activities in the population code get more pronounced,
i.e., units with motion tuning matching to the input increase their activity whereas units with non-
matching tuning decrease it, maintaining on average a constant activity level over the population
at each retinal position, so that metabolic efficiency also would remain constant.

6. Summary

In this work, we have presented a theoretical derivation anda system implementation of a
model for motion estimation that automatically adapts the tuning of its motion detectors on a
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short timescale. It is based on the idea of incremental motion estimation, making use of a prob-
abilistic interpretation of neuronal dynamics. The model consists of “populations” of motion
detectors for each retinal position that encode motion estimation probabilities for a discretely
sampled set of velocities. The motion detectors are recurrently connected and propagate their
local estimations according to a spatiotemporal consistency constraint. For adaptation, the sam-
pling locations in velocity space as well as the tuning curvewidths are tuned systematically to
better cover the motion measurement.

The formal basis of the presented work is a generative framework for spatiotemporal filtering
and an EM-like optimization of the velocity sampling pointsthat maximizes the probability that
the current input can be described with the estimated motionfield. We show that such a system
is able to rapidly adjust (within a few frames) the tuning of its velocity detectors, allowing to
achieve comparable motion estimation results with much less detection units.

Evidence that this is also happening on very short (msec) [6]to short (sec) [5] timescales
comes from biological findings on the tuning of velocity-detecting neurons. The neural response
immediately adapts to motion stimuli which results in attracting shifts in neural speed and di-
rection tuning, meaning that the tuning curves after the adaptation are attracted towards the true
target velocities. This type of adaptation is consistent with the findings presented in this model,
and would provide a functional explanation of the fast adaptation in the sense of an optimal
sampling of the velocity space based on the velocity statistics of the past stimulus.

In our work, for simplicity we have assumed that all units from the motion detecting popula-
tion make use ofthe sameset of discrete, but adaptable motion tuning parametersH,Σ, even if
they are located at different retinal positions. This means, that all neurons feel the entire motion
statistics and adjust accordingly. In a more plausible setting, this assumption would have to be
relaxed, allowing e.g. units at very distant locations to tune independently.
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