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Abstract

In the brain, both neural processing dynamics as well as ¢neeptual interpretation of a
stimulus can depend on sensory history. The underlyingjplieis a sensory adaptation to the
statistics of the input collected over some timespan, atigithe system to tune its detectors,
e.g. by better sampling the input space and adjusting tiponse. Here, we show how a model
for adaptation in visual motion processing can be set up fishprinciples that uses a gener-
ative formulation and casts the problem of adaptation im$eof optimal estimation over time.
The model leads to an online adaptation of velocity tuninyes, inducing shifts in the velocity
tuning and changes in the tuning curve widths that are cabipatith observations from physi-
ological experiments on macaque MT neurons. We also showshiotvan adaptation leads to a
greater computationaliéciency by a better sampling of the velocity space, requikisg motion
detectors to achieve a desired level of estimation accuracy

Keywords: motion estimation, velocity tuning, adaptive system, &stic dynamical system,
online optimization, maximum posterior solution

1. Introduction

Biological sensory systems adapt to the history of the ggrisput over a variety of timescales
and several types of modalities. The adaptation is espepaiminent after prolongued expo-
sure to visual stimuli of a particular type, like orientatjaexture, contrast or motion, and leads
to a systematic bias in the perception or the estimatione$timulus variables.

The function of this adaptation has been studied for a lomg tiln many cases, it leads to
illusory afterdfects that come along with an increased discrimination perdoce, like in the
cases of the orientation tilt illusion [1] or the waterfdllusion [2]. In [3], it is discussed to
which extent the findings are consistent with a decoding stfter the adapting sensory units
that is awaré is not aware of the sensory adaptation, with the conclusiaha fixed, “unaware”
decoder can account for the measuréfdas. However, this does not expldiaw and whythe
detectors adapt, but only th&ect that an adaptation has on a subsequent internal ealuati
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In this paper, we directly look at a functional explanationthe adaptation dynamics of the
sensory units. We assume that the benefits of the adaptatioldwe a temporarily improved
sampling of the sensory input space, which would lead totebgérformance in terms of sensory
estimation angr discrimination accuracy.

Let us consider the case of basic motion estimation. For Bdimally consistent setting
of a model for low-level motion processing, a discrete nundfenotion detectors (e.g. corre-
sponding to motion selective cells) is required that sometavers the to-be-observed sensory
range appropriately. How should they sample the velocigcef In particular, for motion we
have the problem that the potential maximal motion rangelsiée be very large, e.g. in order
to be able to capture large visual displacements originiated head or eye movement, but that
the sensitivity for relative motion fferences also needs to be very high to be able to detect fine
motion structures within the global displacement. The idiag consequence would be a very
fine sampling of velocity space with a very large number oédelrs. A more economic solution
would be to use a reduced set of detectors which adapt to dfalglisplacement and use their
resources to sample velocity space more finely around itdiease the discriminability of the
remaining relative motion. An observation that supporis ithea is that from psychophysics; it
is well known that the presence of a reference frame decseasgon discrimination thresholds
[4].

In physiological studies, motion adaptation is found omeescale of tens of msec to several
seconds. In [5], it is shown that the direction tuning of &#nmotion-sensitive neurons from
macaque area MT (medio temporal cortex) changes withintalfbeec. In [6], it is shown that
also the speed tuning iffacted by the stimulus history and adapts to it in a timefrafrabout
40 msec. The two findings suggest that response charaicteatmotion detectors immediately
and continuously adapt to a stimulus, and that as a consegséargle motion detectors (in this
case single neurons) exhibit a modified motion prefereneasurable by a change of the form
of their motion tuning curve.

The general idea of motion adaptation is visualized in Fig. (n (A), we sketch a system
with a dense coverage of the motion space (exemplarily, eglycity magnitude but no velocity
direction is indicated in the figure) by a large number of deaiifibuted motion detectors. Each
motion detector has a tuning curve (highlighted in red foinale detector) centered around a
sampling point in velocity space. In (B), we show a similasteyn with an insfficient coverage
of the velocity space. Such a system will be deficient in teofsotion estimation accuracy.
Only by adapting its motion detectors, it will be able to irope its estimations. This is shown
in (C) for the velocity sampling points. The tuning curveswaacloser to the object velocity and
cover that part of the velocity space better. In (D), the oesjveness of the tuning curves is
changed by adaptation.

In a generative setting, the target of the system is to mapdrttie probability of explaining
the input. In the particular case of motion estimation, tgmization leads in a straightforward
way to a sensory adaptation that concentrates a set of nagiectors on the relevant velocities
of a scene, i.e., on the statistics of the current stimuluthis paper, we show how the adaptation
dynamics of such a system can be derived from a straightfarpmbabilistic formulation. We
also show that the adaptation increases the motion estimaticuracy allowing the system to
rely on far less motion detectors to achieve results thaicamparable to a dense, but non-
adaptive sampling. In consequence, the derived detecéptatibn leads to attracting shifts in
the speed and direction tuning of motion detectors on a simoescale, similar to those found
experimentally in [5], [6].



A non-adaptive, densely distributed B non-adaptive, sparsely distributed

2 2
2 =
S S
© /::::::::::::::::\ IS

velocity velocity

C adaptive sampling D adaptive sampling & response
> =
3] 3]
© ©
%M\
! T
object velocity velocity object velocity velocity

Figure 1: (A) Set of velocity-tuned neurons with velocityitog curves densely sampling the entire velocity space. (B)
Velocity preferences coarsely distributed in velocity aaut (C) beingsmartly adaptive to be able to cluster around
some relevant velocitigg] and (D) to be able to tune the responsiveness [6]. Seddekirther details.

2. The Probabilistic Filter Model for M otion Estimation

As a basis for our model, we use a modification of the probsthuliilter approach for motion
estimation presented in [8]. We assume that the overalesystescribes a moving input by
using velocity distribution®(v%) for discrete timestepisat retinal positions for velocitiesv in
a continuous velocity space. However, the velocity distitns are approximated by a limited
number of discrete velocity samples at the sampling pdiresH. (In a sense, the motion field
is sampled by a set of motion detectors each characterizedfixgd positionx and a tuning
velocityh e H.)

What we are interested in, however, is not the velocity ahglsiposition but thevelocity
field V! := {Vt}4, which is the set of the velocities at all positions, andssterior) probability
P(VYY1t) given all visual inputsy 't = {Y2, ..., YY} until timestept. In an incremental motion
estimation process, the estimated velocity fiélds influenced by the past velocity fields mean-
ing that the old velocity estimations are used to bias thé oees,P(V!|Y) - P(V!'|Y) -
P(VY Y1) etc. Therefore, incremental motion estimation allowsiide the sensory history
(e.g., the past input images), which leads to faster and aarerate estimations for continuous
inputs.

The most important assumption for including the sensortohiss spatiotemporal consis-
tency Intuitively, this can be understood by looking at the deii@istic motion of particles at
positionx with velocitiesvt, which for the next timestep move towards positior’. At the next
timestept’ and for small time intervals of lengtht = (' — t), it is expected that the velocities
obeyv! ~ V!, and that the particles location follow approximately

X'~ X+ AtV ~ x + AtV | 1)

i.e., the particles move along with their correspondingeities (for notational simplicity, in
3



the following we will omit theAt). For a probabilistic modeling in terms of velocity traisits
P(VY,, Vi) from current to next timestep velocities, from (1) it fodls that, without incorporation
of further knowledge from new measurements, there is aapatporal coupling in the sense
that

¢(V§(//7 VL) = fX(X, - VE(/’ ) X) ft(VE(/H V;) 5 (2)

with e.g. Gaussian,, f;, so that the probability for an estimated veloaityincreases when the
locations and the velocities obey (1). Since also othertioea and velocities fronh can fulfill
(1) approximately, we additionally have to sum over all thpsssibilities arriving at

BV, VY & D FlX = Vi, X) Vi, V). ©)
X

Although the velocity transitiong(vt,, V') prefer spatiotemporal consistency, the final veloc-
ity estimate is able to capture spatiotemporal velocitynges since new measurements induce
information about accelerating and decelerating stimuli.

For a generative model that takes advantage of the sensionhiwe express the posterior
of the entire estimated velocity field in form of a probaltitifilter model [20]. In a Bayesian
manner, we take the last velocity estimate (the last pastatitimet) P(V!|Y''; H) to calculate
the next expected velocity estimate (the predictive pridinae t') P(V'|Y1!; H). This is com-
bined with the likelihood that the next timestep sensorytnfl := {1V, 1!} (with the next and the
last input images! andl') can be explained given a velocity estimate, to gain the pesterior
via

PVYIYH:H) o« P(YYIV';H) x  P(VYYItH) . (4)
NI e NI L/

Measurement likelihood  Predictive prior

The likelihood can be expressed via

POYIVEH) = [ ] &Y vicH). (5a)
y

(YU H) = > o —h) Y" V). (5b)
heH

oY V) = ff(l;’,,ltx,_vtx,/;ef), (5¢)

with likelihood-specific fixed parametefs. That means, that the overall likelihood factorises
into position-specific likelihoods (5a). Due to (5b) theagty parameterization at each position
is restricted to the sampling velocitiess H, and with (5c¢) the local likelihood is gained by the
patchwise comparison of the current and the future inpug&saaround positions compatible
with the velocity hypothesist, as proposed e.g. in [21]. THE andl! are image patches
taken from the imagel” and|! with a fixed window and anchored around positionsindx,
respectively. In (5c) we have again made use of the spatjmiesthconsistency equation (1),
assuming that, for a correct motion on the image, the imagghpa move accordingly, such that
(RN (6)

ANad 1/
X X' =Vy,



The transition to get the predictive prior is done by

PIVIYISH) = 3 P(VIIVEH)P(VIY T H), @)
Vi

P(V'IV'; H)

[ T viH),
D6 =) p(vi, VY,

heH
DB = Vig, X 6) (v, Vi 1), 8)
X

¢(V§(/’7 Vty H)

B(Vy, V')

with prediction-specific parametefg, 6;. Here, we have assumed that the predictive prior fac-
torises spatially and that only the sampling velocitiesH are allowed. The functionf and f;
express the “lateral” propagation of information from thsetlto the current timestep (cf. Sec. 4
for more detailed information).

Inserting (7) into (4) leads to the posterior

PV IYE H) o POYEIVE H) DT P(VEIVE H)P(VYY S H), (9)
Vit

which factorises spatially, such that using (5) and (8) wiiob

POVIIYE H) = [ [ POEIYEY; H), (10)

X’

with the single velocity posterior

POLIYE G H) o 0YY,VEH) DT D" g(ve, VE H) P(VIY S H)

VvVt X
- Z S(vy =) f1 1Y, 560) Z Z Z SV —h) x
h'eH * X vk heH
fo(X = V5, X; 0) fr(VE,, VE; ) POVEIY LS H). (11)

#(vY, Vi) defined in (2)

Eq. (11) is the probabilistic filter description for the tsititont — t’ of the velocity field distri-
bution based on a common, discrete set of velocity sanfpéebl used at all positiong as well
asx’. We further define

Vi, Vi H) 1= > 6(vi = h) (v, V) (12)

heH

In summary, using definition (12), we now can introduce a cachpotation

PIVEIYHH) 1= 7" ¢(vh, Vi H) POIY S H), (13)

X \/;

as the single velocity predictive prior, i.e., the velogtgdiction for the next timestep gained
by propagation of the last posterior and using only the mreasentsy 1* until t, which will be
used in the derivations of the next section.
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3. Online Adaptation of the Velocity Tuning

The incremental filtering uses the sensory history to adepthiotion estimations. In addi-
tion, we can consider fferent parameter sets of the velocity estimation process &daptive
at every time step. Following the argumentation from the introduction and weted by the
biological findings, we concentrate on the tuning curvefpmss and tuning curve widths of the
motion detectors.

In the system introduced in Sec. 2, the velocity detectiritsuneasure the current velocity
estimate directly from the inputimages as expressef{¥Yy, v%,; 6,) in (5). The functions(v{, —

h) from (5) restricts the motion detectors to velocitiés = h, so that we assume each motion
detecting unit to be realised as follows

aYr NV, = ho) = %ex —% ;W(y’ =X)(5 =153, (14)
i.e., their velocity tuning curve is Gaussian-shaped witteater ath and standard deviation
6, = o. Here,w(y’ — x’) is a Gaussian weighting function of the spatial neighbotharound
x” andl} is the intensity of the input at positionx. The image consists of discrete 2D pixel
positionsx. We now assume the motion estimation to be based on a $¢nhudtion detecting
units with corresponding velocity sampling points (regming curve centerdfl = {hp}, and
standard deviations = {0}, that parameterise the tuning curve widths. Both, the tuninge
centers as well as the tuning curve widths are allowed to bptag and can adjust to the current
and past motion estimation statistics of the input.

The temporal adaptation of the parameter gdts} is realised via an extended online vari-
ant of the Expectation-Maximisation algorithm describedhe next section. For this purpose,
we introduce additional priors for the parametdt&;l) and P(X), respectively, to keep the pa-
rameters in suitable adaptation ranges.

3.1. Maximum posterior solution

We consider the velocity tuning curve centggsand the tuning curve widths, to be adap-
tive at every time step. They are parameters of the velosiiynation process, which can be
optimised via an approximate Expectation-MaximisatioMjEnechanism.

The target is to maximise the log probability functiorPigy 1{|H, ) of the dataY** up to
timet given the parametets, = with respect to the optimal parametets, ' for the next time
stept’. The likelihood function is given by

POYHIHL ) = 3 P(Y M, VIHE 3. (15)
Vit

W.l.o.g. and for derivation purposes, in the following wdlvaissume that the same velocity
sampling pointH and standard deviatiorXsare used over the entire visual field. That is, the
sampling points and standard deviations are independethteopositions along the visual field
for which the velocity detection units are responsible. c8ithe probabilistic motion model
given in (11) provides the posterior distributiB@v'|Y1!; HY, ') only up to timet, an online EM
algorithm is applied that only considers the expected vahder the posterior given only past
data for parameter optimisation (instead of the complate-tbg likelihood). The expectation
for the log likelihood evaluated for the parameter $&1&, denotedQw: »:(H, X), is given by

Quiz(H,2) = > PVIYHLHLEY InP(YH, VIH, 3) (16)
Vt
6



Introducing suitable priors for the paramet@&@#1) andP(X) we can calculate successively
these parameters by maximising the expectation while denisig the priors (which is called
maximum posterior solution). This yields

[HY, 2"} = argmay, s(Qux(H, Z) + A INP(H) + 2, INP(T)) (17)

with 4, andA, being weighting factors to adjust the influence of the patam@iors.

3.2. Priors for the tuning parameters

The prior for the set of velocity sampling points is choseragsoduct of Gaussian-like
exponentials

1 2
P(H) o ]_[ exp(~5lIhn — hnoll). (18)

This prior becomes maximal i = Ho, with theN reference sampling pointg,o € Ho sitting
on a squared 2D-grid distributed equidistantly in velosipace around zero. This prior prevents
the velocity samples to get too close together and to calap® one single velocity sample
point.

The prior for the set of standard deviations is chosen asdugpt@f Gaussians such that the
sensitivities of the velocity detection units do not becdotediverse during adaptation and keep
being around some reference valug

PE) o [ ] \/Zlo— exp(—rizuan — aol?). (19)

3.3. Derivation of the adaptation rules

Next, we derive the adaptation rules by an approximate maximposterior solution. To this
end, the following partial derivatives with respect to tla@ameter setisl andX have to be set to
the zero vector

0QHtst(H, X) 41 dInP(H)

oH e - O (20)
aQthzt(H s 2) dln P(Z) 1
2 Lo 21)

Starting with the partial derivativeéQ/dH and assumind®(Y*!|H) to be independent of the
parameters$i, we obtain
0Q 0

. . 9 . .
—==—— % P(VIY';H) nP(VIY™ H) + — » P(VIY'HY) InP(YHH) . (22
g 6H;(|')n(|’)+6H;(|’)n(l) (22)

=0
Using the factorisation assumption (10) and replacing tsteyior with fixed parameters
with the abbreviatiomr(vi; HY) = P(v]Y1t; HY, =) simplifies the derivative as follows

aQ d .
o = a2 | HY In[ [POAIYEGH) (23)
vt x X
~ 6% D73 (v HY In Y H) (24)
X v;
g, 1 .
= Z Z a(Vy; Ht)a—H In Zf(Yt, Vi H)P(VL YL H) (25)
X V;

7



Here, P(V}|Y%; H) is the single velocity predictive prior from (13) and theagtity Z is a
normalisation constantin order to fulfil,, P(vi|Y**; H) = 1. Next, we assume the adaptation of
the velocity sampling to have negligible influence on theljtéve prior, such that it is calculated
with the last velocity sampling'™t, P(v{|Y1*"1: H) ~ P(vi|Y1*1; HY), This approximation
simplifies the derivative and we arrive at

ZZ a(vi; HY a—HInZ+6—HIn5(Y‘ Vi H) + i|n POVLYH L HEY)). (26)

:0 =0

Now, the adaptation tries to tune the parameters of the igldetection units such that the
expectation of the new observation likelihoods under thst pasterior is maximised only but not
the expectation of the transition probability. Hence, tHemation is more sensitive to changes
in the velocity statistics of the visual scene.

In the following, we take the remaining term from (26) andeirishe observation likelihood
(5). Evaluating theé-functions that constrain the velocitigsto the discrete sampling poinitg
leads to a simplified partial derivative

9Q d
oH ~ oH DD e HYIn D 6w = ha) (Y, ) (27)
X \/E< n
0
~ a_H Z Z (I(V; = h;; Ht) In f(YI’V; =hp). (28)
X n

If we specify the observation likelihood (5) with = o, as given in (14) and linearise it with
the first order Taylor expansion, similar to the likelihoaden in [18] using the Lucas-Kanade
approach [19],

oY v =hy) = «/Zlo—n ex;(—le_% Zy: w(y - x)(Iy = 1575 )?) (29)
N «/Zlo—n exp(—T‘l_%(VTlf(hn +1L09), (30)
we arrive at the final expression for the derivative€of
o = L @
g_r?n = Za(v; = hi; Ht)aihn In£(Y, Ve = hy) (32)

X

Za(v;zh;; )im exr(——(VTI‘hn +15)7) (33)

X

1
= ——ZZQ(VL:h‘;Ht)(VTI;hn+It"X)VI; : (34)
(O X

The intensity gradien?I! = [IX,X, Iy,x]T denotes spatial derivatives of the image intensities in
x- andy-direction andl;x denotes temporal derivatives, respectively, taken atipast. Since
for the computation of the spatial derivatives in (30) thages are pre-smoothed with the same
Gaussian weightingi(y — x) as used in (29), we neglect the weighting in the lineaasa{80).
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Next, we need the derivatives of the prior

dlnPH)  (9InP(H)
oH B { ohn }n’ (35)
dInP(H) d 1 .
a—hn = 6_hn In 1:[ eXF(—Eth = hnoll ) = (hno —hp). (36)
Finally, in order to maximise the objective function definedl7)
{(H"} = argmaxi(QHgy(H, %)+ Anln P(H)), (37)
we insert the derivatives (34) and (36) into the constr&f) (
aQHt,zt(H, 2) dln P(H) 1
5 + An oA = 0, (38)
aQHt’Et(H, 2) dln P(H) 1
{ et A . }n = 0, (39)
1 !
(-5 > (vl = hi HY(V 1k + 150 [VIL] + an [hao —hal | = 0, (40)

n x

and solve foh, = h{, to get the adaptation rule for the set of new velocity sangptinintsH"
as follows

(41)

kty2 2 kit kit -1 Kty kit oh
Za’n(lx,x) + Aho; Za’nlx,xly,x _Za'nlt,XIX,X"'/lho—nz_xf
hp = 24 * X
n

X

Salilfi Nen(§R2+ nod | | - Sealli + o? R
X X X
using the abbreviation,, = a(v% = hi;H!). Since we have linearised the exponent of the
observation likelihood in (29) the adaptation rule onlydsofor small velocities. To circumvent
this problem, for each!, we downsample the derivatives of the image intensities aEraussian
pyramid [9] to a proper scale The scale depends on the amplitude of the velocity sampbing
I || such that the linearisation assumption of small movemenitishlikeround(||ht]|/2¥) = 1
withk =0, ..., K.

The derivation of the update rules to achieve an adapted setradard deviations!” works in
an analogous way. The standard deviations enter the fotiongan the likelihood'(Y*, vi; H, X).
In order to maximise the objective function defined in (17fhwespect t&,

3 = argma>£(QH1,2x(H, %)+ A, In P(E)), (42)
we then insert the derivatives
dInP(X) dInP(X)
= |— 4
62 { (90'n }n’ ( 3)
dInP(X) 9 1 1 N
= —_— | —_—— — = - 44
i~ | | e el @9



and, analogous to eg. (31),

5 - 22, (45)
:fn = Z (VL Ht) InZ(Y‘ Vi H,X) (46)
= Z a(vi; H‘)— In exp( (VTI hn +15,)?) (47)
- aig( DS H‘)(VTI;hn REWLG] (48)
in the constraint (21)

6QHt;t2(H,Z) . /laalnéz(z) Lo (49)
(Rt | o,
{aiﬁ( ZX: a(Vy HY(VTIh+ 11,)? - le (Vi HY) o) — ﬂai—g}n £ 0, (51)

and obtain the adaptation rule for the set of new standarctiensx! as follows
(@2 = (D] aig HY(VTIENG /25 + 1902 = a,08)/( D alvii HY). (52)

X X

3.4. Interpretation of the adaptation rules

With (41) and (52), we have gained an explicit iterative diggion for the calculation of the
next optimal sampling pointsl® and standard deviatior® given the current set of adaptive
(H', =Y and fixed @y, A,) parameters. It takes into account the spatial statispigs.() of the
current posterior distribution(vi; HY) = P(v|Y1!; HY, =Y to adapt the velocity tuning!, € HY
and the standard deviatiet}, € X' of eachn = 1...N of the velocity detection units.

The posterior probabilitiea(vt; H!) can be interpreted as a model for the neural activity
of velocity sensitive MT neurons. Their responses are drivg the responses of the motion
detection unit’(Y", V!, = h; o) which can be interpreted as a model for velocity tuned V1
cells. The proposed adaptive Bayesian filter (11) realisggsasiotemporal dynamics that can
be interpreted as a model for the dynamics of the neural MiVigcvia a strong closed-loop
feedback interaction.

The adaptation of the velocity detection units (V1 celldmely adaptation of preferred
velocitiesH' and sensitivity rang&', is driven by the current probability of the posterior
a(v; HY) (activity of MT cells), the current spatiotemporal lumite changes in the visual in-
put (VTIkt I,) and weak {r and 1, are small) time-independent priotdd, %) on the tuning.
This leads to an adaptation of the preferred velocities #htlchanges the sensitivity (52) of the
MT cells such that they best explain the luminance changéseirvisual input and simultane-
ously maximise their activity. The priors lead to a tradeb@tween a neural population of MT
cells with their preferred velocities being equally distried in velocity space versus MT cells
with their preferred velocities being distributed arouhd statistically relevant velocities. The

10



clustering around some certain velocities influences tlaptation of the sensitivity range of the
corresponding neurons and vice versa. The dependencigsdresampling and sensitivity are
shown in the next section 4.

Since we assume the posterior to factorise locdlly (.) the updates are dependent on local
information only. For this reason, the update can be impigatkdficiently in a purely parallel
way. The following pseudo-code shows the compact form oflhéved adaptive spatiotemporal
filter suitable for an algorithmic implementation. All expaents described in the next section
have been realised in Matlab.

Algorithm 1 Pseudo-code for the adaptive spatiotemporal filter

Initialise the priorsy(v?) and the parameter sétk, o, An, A
fort=1toT do
for x=1toX do
Compute the posteriar(vi; H') = P(vi|Y1; HY, £ according to equation (11)
end for
Update the parametehn§ and @2)" of the setdH andX for the next time stepy
according to equations (41) and (52).
end for

4. Experiments

What is the &ect of the adaptation rules derived in the last section? i@enthe probabilistic
filter from (11) without adaptation, i.e., keeping tHefixed. In this case, it is sensible to choose
theh to densely sample the entire velocity space, so that we hseed velocity-detecting units
(neurons) with tuning curves completely covering the guesiange of inputs, e.g. at regular
intervals in velocity space. With the adaptation accordin(#t1) and (52), the tuning curves of
the velocity-detecting units cluster around the relevasbeities available in the input image,
providing a finer sampling around these velocities arftecent maximum values of response.
Fig. (1) (C) and (D) exhibits this idea. The bottom line istttiee system will adjust its tuning
curves as soon as relevant velocities are measured, e.gertdoating around the velocity of
a target object that appears in the visual field. To verifg thypothesis, we provide several
experiments.

4.1. Temporal gects of the adaptation process

First, we discuss the fierence between thdfects of the spatiotemporal integration of ve-
locity information realized by the recurrent filtaithout (see Fig. 2 (C)) andavith (see Fig. 2
(D),(E),(F)) additional adaptation of the parameters efiblocity detecting units. For this pur-
pose, we start with a moving bar as visual stimulus with a amdiirection of 45 in relation to
the bar orientation and a constant speed of one pixel perfasrshown in Fig. 2 (A), similar
to the experiments done by Pack and Born [14]. With such audtisn the velocity detecting
units (neurons) that are responsible for the motion estimatalong the edge of the bar are
heavily faced with the aperture problem [15]. To recover itihaion from the population of
neurons, the population vector method is used [16]. We défieevelocity estimation result
of all detection units with an identical receptive field asjion x as the meam, of velocity
samplesh weighted by the strength of the response (the posteriorgtibty (v, = ht; H') ):

11



A: visual stimulus: moving bar B: average time course of 60 MT cells
adapted from [14]
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Figure 2: (A) Snapshott at different points in time of a moving bar. Results for four fiierent positions along the bar
(0,<.0.>) are given. The black arrows show the velocity estimatiarsespondent to simulation (D). (B) Average time
course of the activity of 60 MT cells of macaque brain for thmalus shown in (A), adapted from [14]. (C) Simulated
time course of the velocity detection units responsiblenfiarked positionst{, <.o.). The polar plot shows the fixed
sampling of velocity space by 25 units with constant and ksgiasitivity. (D) Simulations for the same units as in C but
now they are able to adapt their preferred velocity and geitgi The polar plot shows the adaptation result after 100
time steps. Eachrrow indicates the velocity a unit is most responsive for andgitay valuevisualises the sensitivity
(the brighter, the broader the tuning). (F) shows the hystbiadaptation at times= 1, 2,6, 10, 40, 75 correspondent to
(D). (E) Same simulation as in (D) bufithout sensitivity adaptation.
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= Y eVt = hi;HYh, 1. If we assume a fixed sampling of the velocity space with 26aig}
hypotheses the recurrent filter is able to completely disguate the motion ambiguities caused
by the aperture problem by integrating motion informatiooni different points in space and
time using spatiotemporal transition probabilities asradiin (11). This is shown in Fig. 2 (C)
by the time course qf!, for four different positions along the bar= {(J, <, O, t>}. After ~ 70
time steps the velocity estimates of all positions alondatweconverge to the true motion. Sim-
ilar results without incorporating adaptation have alserbshown by other models, e.g. [10],
using a non-probabilistic recurrent approach. However,pgtesented probabilistic model en-
ables to include adaptation in a formalised way. If we nowwalthe velocity detection units to
adapt their parameters according to (41) and (52), the saghpl the velocity space, the sensi-
tivity of the detection units and the time courses of the eityoestimateg:, change as shown in
Fig. 2 (D). One can see, that the detection units tuned taitedse surrounding the movement of
the stimulus adapt their velocity tuning to cluster arouraltrue velocity of the moving bar (red
circle in Fig. 2 (D)). Hence, the velocity resolution arouhis cluster center increases. Units
that are tuned to other velocities that are not able to empie stimulus movement only slightly
adapt their velocity tuning. In the direct surrounding of timulus movement (red circle in
Fig. 2 (D)) the tuning widths become more narrow, in the nearaginding (green circle in Fig. 2
(D)) some tuning widths become even more narrow (some lesswacompared to the direct
surrounding, and in the far sourrounding (blue circle in. 2gD)) the tuning widths broaden.
Looking at the temporal history of the adaptation proce$ddgn 2 (F) it can be seen, that within
the firstt = 5,...,10 time steps th@elocity tuningh!, adapts and afterwards € 5,...,75)
the sensitivity ranger!, adapts. Aftert ~ 80 no adaptation happens any more as long as the
stimulus does not change its movement. This adaptatiorepsoalso influences the temporal
history of the velocity estimations as can be seen in Fig.)2 The estimations converge much
faster (aftet ~ 20 compared td ~ 70 for a fixed sampling) to one common estimate for three
different bar positions = {<1, O, &>} but under-estimate the motion direction aboutBetween

t = 20,...,80 the estimates keep being together and decrease the estaeate of the motion
direction because theftierences in the tuning widths of the detection units becomesrand
more pronounced. After convergence a slight under-estimiaabout 2 remains. At the begin-
ning the tuning widths are equat.,, = V0.02 (which is also chosen as the prit@:N = /0.02)

and after 100 time steps theyfidir betweenri2 = v0.005 andoi%, = v0.04. For position

x = [ the population coding now slightly over-estimates the tramcity about-2° because
the samples are no longer symmetrically distributed ardbedrue velocity. In (E) the same
simulation as in (D) has been executed Wwithouttuning width adaptation. The sampling con-
verges to the same distribution in velocity space as in (D}trivelocity estimates converge to
slightly different fixed points with increased undexer-estimates of.8°/2.3°. Such estimation
offsets with a mean derence of 8° + 10.5° has also been observed in the experiments by Pack
and Born [14] measuring the time course of the response otitglsensitive MT neurons of
macaque brain. A copy of the result of their experiments @wshin Fig. 2 (B). As shown in
Fig. 2 (D), our spatiotemporal integration framework in orction with the proposed adaptive
velocity tuning method is able to simulate such temporabb@ in a qualitative way. It is im-
portant to mention, that the choice of the parameigrsl,,, Hp andXy influences the temporal

1in the terminology of the introduction, such a populatiarséd estimation constitutes aware decoder, since it
relies on the adapted tuning curve centafs An unawaredecoder would then correspondingly calculate the estiinate
velocity usingul = 3 (v = ht; HY)hop.
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history of both the adaptation and the estimatibns.
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Figure 3: (A) The first frame of the Yosemite sequence. (B) §hend truth optical flow for frame 13. The colors
visualise diferent movement directions and the saturation visualisespbed amplitude (the more saturation, the larger
the amplitude). (C-E) Simulation results of the optical flimw81, 25 and 16 velocity detection units per image location
(F) Polar plots of the fixed sampling distribution in velgcspace for three dierent numbers of detection units 16 (red),
25 (green) and 81 (blue). Each arrow showsfeedent sampling location. The absolute value of an arronesponds

to the speed and the direction of an arrow equals the motietiin. (G) Time course of the mean angular error and
the corresponding standard deviations shown by the errsrfbathree diferent numbers of detection units 16 (red), 25
(green) and 81 (blue). See text for further details.

4.2. Sampling number versus accuracy

Next, we analyse the accuracy of the estimation for fixed aagtve velocity samples and
responsiveness. For fixé¢tlandX but different numbers of detection units the results are shown
in Fig. 3. We compare the accuracy of the motion estimatiothf® Yosemite sequence as shown
in Fig. 3 (A) using fixed arrays of 81 @) (blue), 25 (%5) (green) and 16 ¢4) (red) velocity
detectors at each positioncovering the velocity space as shown in Fig. 3 (F). As a measr
accuracy we use the mean angular error between ground fptittabflow (see Fig. 3 (B)) and
estimated flow as defined in [13]. Along 13 frames of the Yosemséquence (see Fig. 3 (G)),
the performance increases along time because of the sgrapotal couplings of the recurrent
filter, but drops for low numbers of velocity samples becafsetoo coarse coverage of velocity
space. The corresponding flow results after 13 time ste1fo25 and 16 samples is shown in
Fig. 3 (C), (D) and (E), respectively.

2Here, we have chosent, = 5, 1, = 400,%p = V0.02 andHq equally distributed on a square grid between
hy = (-2, —2)T andhys = (2, Z)T.
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Figure 4: (A) The first frame of the Yosemite sequence. (B) §hend truth optical flow for frame 13. The colors
visualise diferent movement directions and the saturation visualisespbed amplitude (the more saturation, the larger
the amplitude). (C-E) Simulation results of the optical flar 81, 25 and 16 adaptable velocity detection units per
image location. (F) Polar plots of the adaptable samplisgriution in velocity space for threeftérent numbers of
detection units 16 (red), 25 (green) and 81 (blue) at time $8 Each arrow shows aftérent sampling location. The
absolute value of an arrow corresponds to the speed andrétiain of an arrow equals the motion direction. The gray
values visualise the sensitivity (the brighter, the brodbe tuning). (G) Time course of the mean angular error aad th
corresponding standard deviations shown by the error loarthfee diferent numbers of detection units 16 (red), 25
(green) and 81 (blue). The dashed lines show the mean aregubas for diferent sampling numbers after convergence.
See text for further details.

Now, we allow the parametetd andX to be adaptive and again have a look at the time
course of the mean angular error foffdrent numbers cdidaptabledetection units. As can be
seen in Fig. 4 (G) the adaptation mechanism leads to velsaityplings (see Fig. 4 (F)) that
smartly cluster around the velocities that best fit to the #tatistics of the scene. Within about
10 frames, the system converges to small angular errors8 Fadaptable detection units the
mean angular error 128 slightly decreases, compared to the erra692for 81 non-adaptable
detection units (the baseline shown as a black line in Figs).(For 25 adaptable detection
units the mean angular error & only slightly increases compared t0.82 (see Fig. 4 (G)),
although the number of samples has been reduced dramatigalhe factor of 8125 = 3.24
(see Fig. 4 (F)). Not before the sampling number is reducea evore, like 16 samples, the
accuracy breaks down to a mean angular error dZ&ut is still much better than the results
for 25 fixed samplings (compare to Fig. 3 (G)). This is alsce#id in the results of the flows for
differently sampled motion detectors shown in Fig. 4 (C), (D) @)dor the sample numbers 81,
25 and 16, respectively. What can also be observed is, thaidthptation leads to a spread of the
sensitivity (i.e., thery’s) of the detection units. Sometimes, this happens in a Watythe more
samples cluster around some region the more the sensdiiseases as shown in Fig. 4 (F). To
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conclude, the reduction of sampling numbers by a factdr ef 3 does not fiect the accuracy
significantly, if the velocity detection units are allowedddapt. Nevertheless, the computational
costs are reduced by the factb since the number of state variablgsto be predicted to the
next time step influences the computational complexity caizzhlly X x N2.

Figure 5: Optical flow results for a real world sequence fiedént timesteps (column A) with ground truth optical flow
(column B), estimated flow using the proposed adaptive fjttelumn C) and adaptation history of the velocity tuning
along time (column D). The flierent colors in (B) and (C) visualiseftéirent movement directions and the saturation
visualises the speed amplitude (the more saturation, therléhe amplitude). The fierent arrows in (D) visualise the
currently optimal velocity samples reflecting the motioatistics given by the input. See text for further details.

4.3. Multiple motions and movement changes
Finally, we tested the adaptive filter for optical flow esttioa with a real world sequence
taken from a moving car [17] shown in Fig. (5) (A) (selecteahfies from the intervaP?, ..., 34}
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are shown). The ground truth optical flow shown in Fig. (5) ¢Bhsists of the movement of the
static scene induced by the camera motion and the motioneadipiproaching car. Due to the
rapid changes of the camera motion the optical flow that epords to the background changes
quite heavily from frame to frame. The motion amplitude of flow of the approaching car is
quite large compared to the amplitude of the backgroundano#dditionally, the amplitude of
the car flow increases quadratically because the shortelistence of an object is, the larger is
the amplitude of the projected movem&and the larger the image region is that is covered by the
object flow. Despite of this highly dynamic image motion, .Kig) (C) shows that the proposed
adaptive filter is capable of estimating the optical flow gginly 25 adaptable velocity-detection
units. This is also reflected in the time history of the sanmplof the velocity space seen in
Fig. (5) (D). The adaptation keeps up with the changes of thigom statistics and gathers around
the preferred motions of the car and the background. Sireenttvement of the background is
small compared to the car motion the samplings responsiblgné background gather around
zero velocity. Hence some are not visible in the plots of () (D) because the amplitude is to
small.

5. Discussion

5.1. Modeling level

We present a functional model of tuning curve adaptatiomfotion estimation units. No at-
tempt was made to model the single units with neurobioldlyicealistic units, as could e.g. be
done using models of spiking neurons. The reason is that wedinced the adaptation dy-
namics as a consequence of an online optimization on thengdeas describing the neuronal
tuning curves of each unit, in order to directly show the iicgtions of the optimization process
on these parameters (the motion tuning curve center andh)addiring the adaptation. Never-
theless, the considerations remain valid irrespective aétailed neuronal model, if the single
motion detectors exhibit a smoothly varying response ghebminated by their underlying mo-
tion measurement and the adaptation drive. This is gegetadl case if the processing units
are not single neurons, but rather neuronal populationiserGtuthors (see e.g. [22]) have pro-
posed more detailed functional models for the motion egtonacascade through V1 and MT,
describing a motion measurement process including cdrgeas control, but their models do
only address contrast gain adaptation.

5.2. Physiological plausibility

Our model can be interpreted in terms of a connectionistalexatwork composed of arti-
ficial “neurons” for each motion estimation unit, i.e., faah unit parameterized by a retinal
positionx of its receptive field, a tuning motion vectiag and a tuning curve widthr, (following
the notation from Eq. (14)). Each motion estimation unit lddee composed of a subpopulation
of several biological neurons with similar tuning propestiand the unit response would be the
averaged subpopulation response. In fact, the model hasilmemented as a network with
as many neuronal units as image positions times the numheladity sampling points, which
amounts e.g. to 316252« 81 = 6450192 units for the Yosemite sequence when using 8drdi
ent motion sampling points at each position. Each unit vesamainly two types of inputs: A

3This is similar to a nonlinear accelerating object that nsdvent-to-parallel to a static camera.
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driving input from sensory motion measurement that prawidhe amount of evidence from its
receptive field for the motion that the unit is tuned to, ardria inputs that convey information
about the estimation confidence of the other units. The fir@lan estimation is contained in
the population of all dferent motion estimating units at each position, and exthasing a
population code.

5.3. Experimental evidence

The clearest benefit of adaptation is increased sensitivdy input contrast adaptation, this
has been discussed in extent in numerous publicationsgsee[28] for a review). As an exam-
ple, light adaptation in the retina [23] enables to covdrtligtensity ranges that vary over several
orders of magnitude with detectors that are severely lunitetheir dynamic range. A similar
effect can be observed for adaptation-induced changes inasbigiain in motion area MT, see
e.g. [24] and [30], [31]. The findings support the notion ofe@aptation mechanism that occurs
in MT and which emerges from intracortical interaction witMT and that depends specifically
from the tuning of the neurons that provide the inputs forabaptation [30], in analogy to the
lateral propagation of information in our model. Physiatad evidence of adaptation of motion
tuning curve parameters (motion direction, speed and tuoimve width) have only recently
been reported by a selected number of publications, se[%]3In [32], it was found that MT
neurons exhibit speed tuning adaptation, and that thistatiap enhances speed discrimination
around the speeds that currently prevail in the environm@&atthe contrary, the psychophysi-
cal evidence for improved perceptual performance as a qoesee of response adaptation is
less clear. Adaptation, however, has been hypothesized thebsource for a number of well
measurable perception aftéiects [1, 2].

5.4. Adaptation and codingfeciency

Grounded on our approach, we propose to consider adapétetian &ect of the tendency of
a neural system to optimally cover a large sensory rangethétfavailable limited resources. In
the case of motion estimation, the need to cover a large raingetion directions and velocities
at all retinal positions rapidly leads to a huge number ofeseary motion detection units. We
have shown that with adaptation, this number can be coraitiereduced (e.g. by a factor
of 3 without losing motion estimation performance, see Big. In this sense, the adaptation
takes advantage of large-scale statistical propertielseo$imuli (i.e., properties that cannot be
measured by single units) to enable the system to improviagefticiency, a principle that has
been orignally postulated by [26]. However, in our modelraprioved coding giciency means
that the estimation of thetimulus propertiess improved. In future, it might be interesting to
also include further criteria like metabolic¢hieiency (see e.g. [25] for a review on this topic
and [28] for the relation to visual adaptation) into the ppgation process. In our model, the
consequences of the adaptation are that the activities ipdpulation code get more pronounced,
i.e., units with motion tuning matching to the input incre#iseir activity whereas units with non-
matching tuning decrease it, maintaining on average a anhattivity level over the population
at each retinal position, so that metabolit@ency also would remain constant.

6. Summary

In this work, we have presented a theoretical derivationasgistem implementation of a
model for motion estimation that automatically adapts th@rtg of its motion detectors on a
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short timescale. It is based on the idea of incremental masimation, making use of a prob-
abilistic interpretation of neuronal dynamics. The modmhgists of “populations” of motion
detectors for each retinal position that encode motiomegion probabilities for a discretely
sampled set of velocities. The motion detectors are regtlyreonnected and propagate their
local estimations according to a spatiotemporal consistennstraint. For adaptation, the sam-
pling locations in velocity space as well as the tuning cumaths are tuned systematically to
better cover the motion measurement.

The formal basis of the presented work is a generative framefer spatiotemporal filtering
and an EM-like optimization of the velocity sampling poittigt maximizes the probability that
the current input can be described with the estimated mdigtch We show that such a system
is able to rapidly adjust (within a few frames) the tuning tf velocity detectors, allowing to
achieve comparable motion estimation results with muchdesection units.

Evidence that this is also happening on very short (msecho[@hort (sec) [5] timescales
comes from biological findings on the tuning of velocity-el&ing neurons. The neural response
immediately adapts to motion stimuli which results in attirag shifts in neural speed and di-
rection tuning, meaning that the tuning curves after theotaden are attracted towards the true
target velocities. This type of adaptation is consistetihwhe findings presented in this model,
and would provide a functional explanation of the fast adtgh in the sense of an optimal
sampling of the velocity space based on the velocity siegistf the past stimulus.

In our work, for simplicity we have assumed that all unitanfrthe motion detecting popula-
tion make use othe sameset of discrete, but adaptable motion tuning paraméiels even if
they are located at fierent retinal positions. This means, that all neurons feekntire motion
statistics and adjust accordingly. In a more plausiblerggtthis assumption would have to be
relaxed, allowing e.g. units at very distant locations toetindependently.
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