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Abstract. In the automotive industry Computational Fluid Dynamics
(CFD) simulations have become an important technology to support the
development process of a new automobile. During that process, individ-
ual simulations of the air flow produce a huge amount of information
about the design characteristic, where mostly only a minority of infor-
mation is used. At the same time knowledge about the relationship be-
tween design modifications and their aerodynamic consequences provides
valuable insight into the entire aerodynamic system. In this work a com-
putational framework is introduced, providing means to identify relevant
interactions within the aerodynamic system based on existing design and
flow data. For an efficient modeling, the raw flow field data is reduced
to a set of relevant flow features or phenomena. Applying interaction
graphs to the aerodynamic data set unveils interacting and redundant
structures between design variations and observed changes of flow phe-
nomena. The general framework is applied to an exemplary aerodynamic
system representing a 2D contour of a passenger car.

Key words: Data Mining, Structural Modeling, Information Theory,
Interaction Information, Aerodynamic Design, Flow Field Feature

1 Introduction

In the automotive industry computer aided engineering (CAE) tools have become
an important technology for improving the design development process. Physical
experiments are replaced by computational tools to reduce development costs,
see [10]. Hundreds and thousands of different geometric models of the designs
and flow fields are simulated before an actual physical model of a design is
build. However, usually the resulting flow field is reduced to a single number,
defining the performance of the design. In order to get a deeper insight into the
aerodynamic system at hand, we developed a framework for identifying relevant
interaction structures between shape, flow field phenomena and performance,
based on these otherwise unused data.

After reviewing related research activities in the subsequent section, the de-
tailed framework proposed is depicted in section 3, including details about data
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reduction, the modeling of the interaction structure and the visualization of the
results. The general framework has been applied to an exemplary aerodynamic
system modeling the 2D contour of a passenger car, depicted in section 4.

2 Related Work

In the domain of aerodynamics, computational approaches for data mining and
knowledge extraction are rarely being reported. Nevertheless, most of the ex-
isting works approach the modeling of the relationship between design varia-
tions and performance only. As an example, Obayashi et. al [18, 1] utilized self-
organizing map (SOM) and analysis of variance (ANOVA) techniques to identify
relevant relationships between design and performance, and Graening et. al [4]
introduced a knowledge extraction framework discovering a set of If-Then rules,
which illuminate causal relations between design modifications and performance
changes. Further, the need of a universal geometric design representation within
the framework is stated. However, the flow field produces much more information
about the design concept than kept in the performance number. Nevertheless,
it is impossible to handle the whole flow field. Therefore we extract flow field
features commonly used for the visualization of flow field data. An overview
of the sate of the art in flow visualization are given by [19]. De-composition
methods, like the proper orthogonal decomposition (POD) [14], are applied to
reduce the dimensionality of the flow field while keeping the majority of the
energy contained in the flow. Often, decomposition methods are used in a pre-
processing step, e.g. before flow phenomena like vortices are extracted, see [6].
While decomposition methods come up with features that have no direct physical
meaning, other researchers aim at explicitly quantifying the position, rotation
and elongation of physical artifacts like vortices or attachment and detachment
lines [11]. Due to the similarity to optical flow, some attempts are derived from
the computer vision domain to detect flow patterns, e.g. see [20]. In the con-
text of applying data mining technologies to flow field features, Depardon et. al
[3] use multi-dimensional scaling (MDS) for the classification of flow topologies.
However, the relationship between flow fields and design properties has not been
considered.

3 Interaction Modeling Framework

Based on earlier work from Graening et al. [5], the authors aim at deriving a
general framework for identifying interaction structures in aerodynamic systems.
Given the design process (e.g. targeting the development of a new car design),
various design shapes together with its related flow field data are generated. Each
of the shapes is represented by a low dimensional geometric representation of the
actual continuous surface. Spline surfaces like NURBS (Non-uniform Rational
B-Spline) or FFD (Free-From Deformation) are exemplary representations often
being used. In a pre-processing step the geometric representations have to be
unified and reduced to managable number of design features. Given the surface
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Fig. 1. Overall framework for the identification of structural interaction patterns with
an aerodynamic system.

representation and the size of the computational area in which to model the flow,
a discrete volume mesh is generated discretizing the computational area, with a
typical mesh size in the order of 10® or more cells. The volume mesh together with
the pre-defined wall conditions make up the initial setup for the CFD simulator.
After simulation, detailed local information about the flow direction, velocity,
pressure, temperature and so on is available. The resulting amount of data is too
huge for an adequate analysis of flow effects and its relation to design parameter
variations. A feature extraction step is introduced reducing the raw flow field to
a low dimensional representation as depicted in Fig. 1. The choice of the flow
field features strongly depend on the given task. Alongside the flow features,
individual performance indicators are calculated, to quantify the overall quality
of the shape.

After the pre-processing, interaction analysis is applied to identify the in-
trinsic structure of the aerodynamic system at hand. Based on a probabilistic
attempt from information theory, described in the following section, the most rel-
evant structures in the system of design features, flow features and performance
are identified. Finally, interaction graphs are deployed to transfer the extracted
information to the aerodynamic engineer, thus influencing the design process.

3.1 Information Theoretic Interactions

Following Krippendorff [12], we define interaction as a unique dependency from
which all relations of lower ordinality are removed. Information theoretic at-
tempts for quantifying interactions are founded based on the formulation of the
Shannon entropy. Given a discrete random variable X;, the Shannon entropy,
denoted as H(X;), is a non-negative measure of uncertainty quantifying the
amount of randomness contained in X;. It is formally defined as: 0 < H(X;) =
- ij:l p(zn)logp(z,) <log N, with N being the number of discrete intervals.
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The logarithm is commonly chosen with the base two, resulting in H(X;) being
measured in bits.

For two variables X; and X, the mutual information [2], I(X;; X,), 2-way
interaction or transmitted information can be considered as the amount of in-
formation shared among both variables. The mutual information can be written
as the difference between maximum entropy, assuming independence among the
variables, and the actual joint entropy [12] observed:

I(Xi; Xj) = H(X;) + H(X;) — H(X;, X;). (1)

I(X;; X;) is only equal to zero if X; and X are statistical independent. In case
that a dependency between X, and X; exists, I(X;; X;) is always larger zero,
bounded by the maximum of the marginal entropies H(X;) and H(X;). Based on
the work of McGill [15], Jakulin and Bratko [7] defined the interaction informa-
tion for multiple attributes. The interaction information for three variables X7,
X5 and X3 evaluates the information gain resulting from the 3-way interaction
which is not present in any of the 2-way interactions:

I5(X1: X3 X3) = I(X1, Xo; X3) — I(X1; X3) — I(X2; X3). (2)

1;(X1; X; X3) quantifies the information shared among the variables X7 and X»
with X3, reduced by the information shared between variable X7, X3 and X5, X3.
It is important to note that in contrast to the mutual information the interaction
information can have negative values. I;(X1; Xo; X3) gets negative if the joint
information of X; and X5 on X3 is smaller than the product of I(X7; X3) and
I(X2; X3). This is the case if the information added to the system through
interaction is smaller compared to the amount of redundant information in the
system that e.g. X; and X3 have in common about X3, see [13]. In consequence,
I;(X7; X2; X3) = 0 not necessarily reflects the absence of an interaction rather
that information and redundancy cancel each other out. However, a positive Iy
indicates a surplus of information due to interaction and a negative I; indicates
a surplus of redundancy. Higher order interactions (larger three), as defined by
Jakulin [8], are not considered throughout this study.

3.2 Interaction Graph

An interaction graph [7] is a visualization of the identified interaction structure
from observed variables characterizing the system. In this work we adopt su-
pervised graph structures visualizing 2-and 3-way interactions relative to an a
priori chosen dependent variable Y with the target to explain the uncertainty
of the dependent variable. Thus, all information quantities are normalized by
the uncertainty of the dependent variable, H(Y"). The graph consists knots la-
beled by the relative mutual information I(X;,Y)/H(Y) and edges between
two nodes of X; and X; corresponding to the relative interaction information
I;(X;,X;,Y)/H(Y). Edges with a negative relative interaction information are
drawn with dashed lines and with solid lines otherwise. For the sake of readabil-
ity, only the most significant 3-way interactions are drawn into an interaction
graph.
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4 Application to a Passenger Car Model

The introduced framework is applied to a two-dimensional model of a passenger
car to unveil interactions between car shape deformations, flow field features and
performance measures. A parametric Free-Form Deformation (FFD) [21] with
20 control point parameters (design parameters), see Fig. 2, is applied to model
the design contour of the car. 1000 variations of the car design are generated by
applying a latin hypercube sampling (LHS) [16] to the design parameters. The
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Fig. 2. a: Contour of the initial passenger car together with the FFD control point
lattice, defining the position of the control point parameters used to vary the car
shape, b: Visualization of the identified upper R2 and lower L4 wake vortex behind
the car

computational fluid dynamics simulation of the passenger car is carried out by
OpenFOAM®!, For each car, the stationary flow field is computed using the
simpleFOAM solver, which iteratively computes the steady-state solution of the
incompressible Navier-Stokes equations.

4.1 Flow Feature Extraction and Performance Evaluation

The resulting flow fields are reduced to a small set of flow features and per-
formance indicators. A common objective in car design is to reduce the drag
force D, acting opposite to the flow direction, while reducing lift force L, per-
pendicular to the drag force component. Beside drag and lift and without loss
of generality our performance indicator is defined by a superposition of lift and
drag:

Q= o=+ . 3)

vvarL  vvarD

The major part of drag on road vehicles (form drag) is the result of flow separa-
tions [9], especially at the aft section of the vehicle. The flow separation at the
back of the car is always attended by an upper and lower vortex sheet behind the
vehicle. Hence, the size and orientation of the emerging vortices is linked to an
change of the drag value. Vortices are characterized by discontinuities observed

! OpenFOAM: open source CFD, http://www.openfoam.com/
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in the vector field. To identify those discontinuities the vortex identification al-
gorithm of Michard [17] has been adopted,

Ii(P) = & 3 (600) (1)

S

The dimensionless scalar I'1 (P) integrates over the angles 6, between the ve-
locity vectors for each point M € S, where S defines the neighborhood around
P and the vector PM. |I'1| becomes close to one in the range of vortex centers.
Applying a threshold to the calculated values of |I] allows to identify vortex
regions as shown in Fig. 2b. Gray areas indicate the position of the upper R2
and lower wake vortex L4 behind the car. The results of I are used to model
the vortices with ellipses, estimating the orientation, the size and eccentricity
of the vortices. For all 1000 generated flow fields the corresponding vortices be-
tween different flow fields are identified using the Euclidean distance between the
vortex centers. Flow fields that have no correspondence in any of the generated
flow fields have to be treated differently what is not considered in this work. We
limit the following studies to the vortices R2 and L4, where a correspondence
for any flow field is found.

4.2 Interaction Analysis

Given the data of all 1000 designs the interactions are modeled and visualized
using interaction graphs. Only the design parameter modifying the design in y-
direction have be considered in this study. The interaction graphs for modeling
the relationship between a: design features and drag D, b: design features and @,
c: design features and the size of the upper wake vortex R2 as well as flow features
and @) are depicted. Regarding the influence of the design parameters d; on the
drag D, Fig. 3a, variations of the rear part of the car have a stronger influence
compared to variations on the frontal part. Especially parameter d18 and d12
share a majority of information with the drag. d18 already explains about 26%
of H(D). Further, the interaction between d12 and d18 seems to be relevant for
explaining variations in drag. Interactions between the frontal and rear part of
the car model seem to be negligible. The interaction graph concerning lift L, not
presented here, provides qualitative similar results as for the drag. Concerning
the influence of the flow field features on the drag, the size of the upper wake
vortex R2 turned out to be most relevant. The interaction structure for the
size of R2, Fig. 3c, is qualitatively the same as, Fig. 3a, what consolidates the
importance of the flow feature. Interestingly, in all interaction graphs comprising
design parameters, no strong redundant connections are observed, possibly due
to the chosen representation, where the influence of individual design parameter
on the shape does not overlap.

While usually the effect of design variations and flow phenomena is studied
regarding aerodynamic properties like drag and lift, the influence on combined
objectives like the performance measure @ is seldom be regarded. The graphs
showing the interaction structure between design features and @ as well as be-
tween flow features and @ are depicted in Fig. 3b and d respectively. Comparing
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Fig. 3. Resulting interaction graphs modeling the interactions between a: design pa-
rameter and drag D, b: design parameter and objective ), c: design parameter and the
size of the upper wake vortex R2, d: flow features and the objective Q.

the interaction graph from Fig. 3a, showing the interactions between design pa-
rameters and D, with the interaction graph from Fig. 3b, interactions are of
relevance which are not important for either of the individual objectives D or
L. E.g. the influence of d04, located at the frontal part of the car, becomes more
relevant. Please consider that the graph for L is not shown here but is quali-
tative similar to the interaction graph for D. Further, the frontal part and its
interaction with the rear part of the car becomes more relevant concerning the
combined objective (). Finally, the interrelation between the flow features and
@ are under investigation. Fig. 3d shows that the orientation of the lower wake
vortex L4, the orientation of R2 and the size of R2 seemingly have a strong in-
fluence on Q. Redundancy between the orientation of L4 and the size of R2 are
observed. This might be the result of interference between the lower and upper
vortex for certain configurations of the size of R2 and the orientation of L4.

Overall, the interaction analysis results in hypothesis about the relationship
between design-, flow properties and objectives valuable for the ongoing design
process, once consolidated with real physical experiments. E.g. with the given
knowledge, selected design parameters can be modified for manipulating distinct
flow phenomena with respect to a given objective.

5 Conclusion

In this work we presented a general framework for identifying interaction struc-
tures in aerodynamic systems, by deploying techniques from information theory.
For the investigation of aerodynamic systems that constitute high-fidelity flow
simulations, the flow field data has to be reduced to a manageable amount of
flow features before modeling interactions. As pointed out, the choice of flow
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features depends on the defined objective. The framework is applied to the au-
tomotive domain, exemplary to the 2D contour of a passenger car model. Inves-
tigating the interactions between design-, flow features and objectives provides
valuable knowledge about the aerodynamic system. The knowledge can directly
be utilized by the design process by filtering design parameters and interactions
affecting distinct flow features relevant for a defined objective. The application
of the framework to 3D non-stationary flow field data is considered for future
work. This requires to discover different techniques for identifying and tracking
flow field features and discrete information like the absence of a flow feature has
to be processed properly. Finally, the result of the interaction analysis need to
be consolidated by real physical experiments.
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