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Active 3D Object Localization Using
A Humanoid Robot

Alexander Andreopoulos, Stephan Hasler, Heiko Wersingheétérdanssen, John K. Tsotsos, and Edgamisr
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Abstract—We study the problem of actively searching for an
object in a 3D environment under the constraint of a maximum Target Map cells with an
search time, using a visually guided humanoid robot with twenty- object lying in one cell
six degrees of freedom. The inherent intractability of the problem .
is discussed and a greedy strategy for selecting the best next
viewpoint is employed. We describe a target probability updating
scheme approximating the optimal solution to the problem,
providing an efficient solution to the selection of the best next
viewpoint. We employ a hierarchical recognition architecture,
inspired by human vision, that uses contextual cues for attending p
to the view-tuned units at the proper intrinsic scales and for
active control of the robotic platform sensor’s coordinate frame, A 7
also giving us control of the extrinsic image scale and achieving
the proper sequence of pathognomonic views of the scene. The Update the Target
recognition model makes no particular assumptions on shape  Map probabilities X
properties like texture and is trained by showing the object by 4 CF“?.Z"‘G 'ml\fgesge"e“;lraégﬁtlj -
hand to the robot. Our results demonstrate the feasibility of using onfidence Maps (Secs. II-C, II-D) <&
state of the art vision-based systems for efficient and reliable
object localization in an indoor 3D environment.
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Fig. 1. Acquiring an image and using the Target Confidence Mappdate
a4 x 4 x 4 cell Target Map. Grey cells in the Target Map denote the Marke

Index Terms—Computer Vision, Active Vision, Visual Search, Candidate Cells (Sec.Il-C) that are induced by the obsi@ciease).
Recognition, Honda’s Humanoid Robot

into the sensor’s field of view regions that are hidden due
i , , i to occlusion and self-occlusiolfii) Foveate and compensate
V ,ISION IS the process of d'SCO"e“”Q from 'mage?' Wh%r spatial non-uniformity of the sensqfiii) Increase spatial

is present in the world and where it is [1]. Within theggoiytion through sensor zoom and observer motion that

context of this paper, we distinguish four levels of taskéh@ 1o the region of interest in the depth of field of the
vision problem, which we label as follows [2]: camera. (iv) Disambiguate degenerate views due to finite
» Detection is a particular item present in the stimulus? camera resolution, lighting changes and induced motion [6]

« Localization detection plus accurate location of item. (v) Deal with incomplete information and complete a task.
« Recognition localization of the items present in the An active vision system’s benefits must outweigh the asso-
stimulus plus their accurate description through thegizted execution costs [4]. Dealing with the associatedscos

I. INTRODUCTION

association with linguistic labels. _ _ of an active vision system is a fundamental problem in robot
« Understanding recognition plus role of stimulus in theyjsjon and the human visual system (HVS) [7]. In the HVS
context of the scene. this emerges as the attention problem [8], a phenomenon

It is generally accepted that passive approaches to thenvissubsuming the active vision problem that has recently estart
problem have a number of shortcomings. As a means tofemerge as an important issue in computer and robot vision.
addressing these problems, Bajcsy introduced in 1985 thiee associated costs in an active vision system inclide:
concept ofactive perceptionor active visionas “a problem Deciding the actions to perform and their execution or¢igy.
of intelligent control strategies applied to the data asiffjon The time to execute the commands and bring the actuators
process” [3]. Active control of a vision-based sensor affeto their desired state(iii) Adapt the system to the new
a number of benefits [4], [5]. It allows us tqi) Bring viewpoint, find the correspondences between the old and new

_ _ viewpoint and deal with sensor noise ambiguities [4].
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Fig. 2. A component-wise [11] break-down of the active 3D objecalization architecture, outlining each executecplderation and defining the execution
order of each component in our architecture. In Secs.ll-8,lI-D of the text, we describe the motivation and the impletagan of the ‘Update Maps’
component and its outputs. In Sec.ll-B of the text, we desctite components ‘Hypothesis Generator and Inverse KineshatRath Planner’, and ‘Find
Optimal Hypothesis’, as well as their outputs. In Sec.ll-Blu# text, we describe the ‘Feed-forward Hierarchical Radamn’ component.

benefit to the cost, in a one-step look ahead approach. take to obtain more robust recognition in the presence of
Some of the earliest work on active object localizatior@mbiguous viewpoints. Foissotts al. [29] propose a next-
includes Garvey’s [12] work on searching for intermediateiew-planner for 3D object modelling and comment on its
objects that participate in spatial relationships with theet potential applications in multi-view recognition. Rat al.
object, in order to speed up the localization. Similarlyxgdin [30], [31] present an active object recognition algorithom f
and Ballard [13] present an active object localization alg®bjects that might not fit in the camera’s field of view.
rithm that uses intermediate objects to maximize the systerh number of techniques for solving problems within the
efficiency and accuracy. Such intermediate objects arellysuamobile robotics field, involve choosing a sequence of astion
easy to recognize at low resolutions and they are, thustddcathat reduce the amount of uncertainty under noise-free ob-
quickly. Maver and Bajcsy [14] propose a next-view-plamgninservations and noisy observations of the environmend,
algorithm to deal with occlusions and search for a target MDPs and POMDPs [32], [33]). The use of POMDPs for the
hidden regions. Rimey and Brown'’s [15] TEA-1 vision systeracene exploration and SLAM problems has gained popularity
can search within a static image for a particular object aard camongst the robotics community. POMDPs have been applied
also actively control a camera if the object is not withirfigdd  successfully on problems that use non-vision based sensors
of view. Giefinget al. [16] propose an active vision systemand a significant research effort is currently under-way on
that incorporates camera gaze shifts for exploring sceneglated problems utilizing MDPs/POMDPs with mixtures of
Ekvall et al. [17] integrate a SLAM approach with an objecwision and non-vision based sensors [32], [34]. In the next
recognition algorithm based on receptive-field co-ocawee section we describe our active object localization al@onit
histograms. Other algorithms combine image saliency mecha
nisms with bag-of-features approaches [18], [19]. Seidal. [I. A'HUMANOID ROBOT THAT SEARCHES
[20] present an implementation, on a humanoid robot, of anWe address the problem of actively searching for an object
active object localization system that uses SIFT featu?&$ [ in a 3D environment using a research version of Honda’s
and is based on the next-view-planner described in [9].  humanoid robot (HR) (see Fig.1 and [35]), a visually guided
A number of papers have dealt with the similar problemsumanoid robot with twenty-six degrees of freedom (DOF).
of multi-view detection and recognition. Some of the eatlieWe describe an object probability updating scheme progidin
work on view planning for object recognition includes the solution to the best next viewpoint selection problem. We
work by Wilkes and Tsotsos [22]. The authors suggest usiegploy a hierarchical recognition architecture inspired b
various behaviours for detecting objects in the presence lafman vision [36] that uses contextual scene structurefones
ambiguities such as view degeneracies [6], occlusion aattending to the architecture’s view-tuned units at theppro
limited depth information. Callariet al. [23], [24] define intrinsic scales and for active control of the robotic patfi's
contextual knowledge as the join of a discrete set of priposition, also giving us control of the extrinsic image scal
hypotheses about the relative likelihood of various modahd achieving the proper sequence of pathognomonic views
parameters, given a set of object views with the likelihoodf the scene. Cues used include hue, stereo depth informatio
of each object hypothesis as the agent explores the scemgected viewpoint dependent occlusions, object scale and
Laporte and Arbel [25] also present a Bayesian approatdrget unigueness within the scene context — uniqueness
to the viewpoint selection problem. Dickinsagt al. [26] within each acquired image and across all acquired images.
combine a Bayesian based attention mechanism, with aspedn Fig.2 we show the system’s organizational structure.
graph based object recognition and viewpoint control. &8ehi Our system maintains target map(Sec.ll-A), encoding the
and Crowley [27] use a measure callednsinformationfor probability that each position in the search space contains
building a robust recognition system. Similarly Borotsichet the centre of the object we are searching for. Our system
al. [28] use an information theoretic based quantity (entropglso maintains anbstacle magSec.ll-A), which encodes the
to decide the next view of an object that the camera shoudttucture of the explored scene. The robot we use [35] feder



IEEE TRANSACTIONS ON ROBOTICS 3

to in this paper as Honda’s humanoid robot, or, HR) executesly if the corresponding target map cell has a non-zerorprio
a finite sequence of greedily selected movements, positioniprobability. Since we assume that a single target object®xi
itself to the next-best viewpoint that maximizes the pralitgb in the scene, the target map cells sum to one.

of localizing the target object position (based on the Tng&0  pefinition 1. (Scene Sample Functionp scene sample func-
probabilities), taking into consideration potential amibns tign 11, (%), denotes the sensor output that was acquired under
from each viewpoint (using the obstacle map informationy, narameters, representing the sensor state at stepc N
while also minimizing the cost of moving to the new viewpoinge .+, could represent the extrinsic camera parameters,
(see Sec.lI-B). As we briefly discuss in Sec.II-A, this a@@iv field of view etc.), wher is an index into the scene sample
helps us deal with the intractability of the object locatiaa function ., . We use\, to denote the sensor output acquired
problem under a cost constraint. The outputs of a feedf@tway; stepn, without specifying,,. For example, in the case of
hierarchical recognition architecture (Sec.lI-E) ar@sfarmed greyscale imagesf = (4,) can denote a pixel index and
into single-view generative probabilities (see Sec.ll-G@da , (7) = A, (%) is the intensity of pixelf, assuming the
Sec.lI-D) that encode desirable criteria of target uni@ssn camera’s parameters were set t9 when the image\,, was
within each individual image, but also across multiple i@®9 acquired. Thus, evenfiii, } is equivalent to the occurrence
These probabilities are incorporated in a Bayesian framewqyf two events: the event where the sensor state is sef, to

that is used to update the target map probabilities. A gjyatezng the event where the sensor output is functign Given

system’s reliability is also described in Sec.|I-B. Notice that if we condition om,,, then the conditioned event

] o {1tv, }{vn} is equivalent to evenf\,, }|{v,}. In this paper, a
A. Basic Definitions sensor state,, specifies the eye coordinate frame and the heel
We define the active object localization problem as the probeordinate frame with respect to the world coordinate frame
lem of finding a finite sequence of viewpoints that maximizenhile .., denotes the sensor statg and the image\,, that is
the probability of localizing the target object, subjecttoost acquired by HR’s left camera (the eye coordinate frame)eund

constraint [9]. This section formalizes the problem. statev,,. We define a probability spac® = (X1,%1,p1)
Assumption 1. We assume that exactly one instance of tH87] for any sensor stater € X;, where X, is a set
target object exists in the scene. of sensor parameter states; is a o-algebra of X;, and

p1 is a probability measure oX; whose support includes

Coordinate Frame, the World Coordinate Frame, and the al states_ that are achievable by our: sensor ”?_the current
scene. Similarly, for eaclw, we define a probability space

Eye Coordinate Frame The origin of the heel coordlnateT(v) — (X,, %, pe) With p,()) denoting the conditional

frame is defined as the projection on the floor plane of th%obabilit of oceurrence of an image € X,, if the image
point centred between HR’s two heels. Hsaxis is parallel b y e 9

o the floor's normal and points upwards. I-axis points were acquired under sensor statd he underlying probability

in HR’s forward direction (see Fig.1). The world coordinat(g:i eraisnureil,luanci)g:':i)rghioi?jri]tisoer?sS((:jeer;% l:gglir)t;lil:tye(rlg?ge)sn0|se,
frame is the inertial frame and corresponds to the initiadl he ying ! g :

. . . : and is largely unknown and difficult to model in practice.
coordinate frame. Finally, the eye coordinate frame is #fi | .
) . . Given a sequenceq, ..., v, Of sensor states, the totak-
camera’s coordinate frame (see Fig.1).

The search spaceconsists of a 3D regioriX;, Xu] x quence costT’(n) associated with executing the sequence is
Iy “Ah

. N B
Y}, Y3] % [Z1, Z),] whose coordinates are expressed with ré&h" < byT'(n) = T(n—1)+to(vn_1,vn) Whereto(un 1, vn)
spect to the world coordinate frame. Tharget map is a denotes the sum of the gosts of planning the next stateom
discretization of the 3D search space into non-overlapfbg ?sjtatev%_(ll)air;dtﬁ; rgggth?fgrgzgﬁﬁ: Sz;gr?gnﬁﬁzoirnige
cells. Each cell is assigned the probability that it is thik ice rgt;(;t. state. In this paper. the cdgt(% va) i proportional
the scene containing the target object’s centroid (se€)ig. ‘ baper, n—1,Vn) IS Prop

. . S to the sum of the time the robot takes to plan the next move
The obstacle mapis a discretization of the 3D search SPace 1 of the time the robot state takes to reach statirom
into binary valued 3D cells. Each cell indicates whether It . : : !
contains solid structure (see Fig.2). Finallynaver-viewed initial statewv,,_; (e.g.,the time to execute one iteration of the

map discretizes the 3D search space into binary valued celllOOp in Fig.2). We define one variant of teenstrained active

denoting the cells that have been sensed at least once. ?SHJeeCt localization(CAOL) problem as follows:

updating of these maps is discussed in Sec.lI-C. In this,padgefinition 2._ (Constrained Active Object Localization:

the discretization of the target map, never-viewed map aN@"iant 1) Find a sequence, ..., v, of sensor states and
obstacle map is the same, and consists of cells with eqify cellsi € C satistying p(c{|An, vy, ..., A1, v1) > 6 and
volumes §em x 5em x 5em), whose centres are uniformlyZ'(n) < 17 for someAy, ..., A, whereT” is a search cost
sampled abem intervals along each axis (see Fig.1). We uggound, o is a probability threshold, and;] denotes the event

a set of positive integers;’ = {1,2,...,|C|}, to index each that the centroid of target is in cell i.

cell in the target map, obstacle map and never-viewed mapBy Def.1, p(ct|An, v, ooy A1, v1) = D(CE| o, s ooy flay ). SO-
where |C| denotes the cardinality of set. All cells of the lutions to the above problem can compensate for our limited
obstacle map are initialized as containing no obstacle. |A cknowledge onY(v) Vv, and satisfy the need to minimize
of the never-viewed map is initialized as ‘not-viewed’ ifdan actuator and sensor movements, by searching for a finite

Our system depends on three coordinate framesHibed
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sequencey,, ...,v; that minimizes the total search time ancollisions during the path planning phase. To this extent,
that best samples the unknown probability spaces. In [10]the HR bounding cylinder is defined as the 3D region
is shown that a number of variants of the problem are NEncompassed by the smallest volume cylinder whose medial
Hard. The rest of Sec.ll presents an efficient algorithm thakis intersects the heel coordinate frame’s origin, is |pgra
approximates the optimal solution to the CAOL problem. to that frame’'sZ-axis and completely encompasses HR (see
Fig.1). We use a path planner based on Dijkstra’s algorithm
to determine whether there exists a path from HR’s heel
coordinate frame origin corresponding to the current senso
We now describe our next-view-planning algorithm thagtatev,,_; to a candidate sensor stateand to find the shortest
allows us to select the next sensor statg given that we path to follow in moving fromw,,_; to v. Let
have executed actions, ...,v,,_1. In Sec.ll-C and Sec.ll-D
we discuss how to update the target, obstacle and neveegdiew ML" = projix, x,)xvi,vi] (ML) 1)
maps for each new sensor stateHR finds itself in (each loop
iteration in Fig.2). We use a hypothesize-and-test approac denote the projection of the movement list on its first two
the next-view-planning problem that parallels the greedg adimensions. Then, the nodes of the graph used by the path
near optimal strategy for solving the Knapsack problem [9planner correspond tb/ L'. Each pair of nodes;, n, € ML/,
[38]. The approach is a one-step look-ahead algorithm whith 7 n2, are connected by an edge (if) the two nodes fall in
also parallels the optimality of the ideal searcher [39]r Fdeighbouring cells on the Voronoi diagram of L' and (ii)
each sensor state corresponding to one of the candidatéhe total number of cells marked as obstacles plus the total
hypotheses, we assign a score that is based (dnThe number of cells marked as never-viewed in the corresponding
likelihood of detecting the object from the sensor stafe mMaps, that also lie in HR’s bounding cylinder as it traverses
given the expected occlusions and expected intrinsic safalefrom n; to n, do not exceed a threshofd. The edge weight
the projected object if it were centred in each of the targ'@; the distance between the two nodes. In Sec.ll-C we will
cells viewed by setting. (i7) The expected cost of reachingneed to update the target map cells which lie inside the targe
statev from the current state. We proceed by defining thebject’s volume and are, thus, occluded from all viewpoints
candidate hypotheses/sensor states over which we optiheze\We continue by defining certain data-structures for achgvi
next-view-planner, when selecting the next sensor state. this goal, which are also used by the next-view-planner.
Intuitively, our set of candidate hypotheses consists ef th Thetarget bounding cylinder at 3D positionz, consists of
cross product ofi) a set of poses for the heel coordinate framiée 3D region encompassed by the smallest volume cylinder
with (i7) a set of poses for the eye coordinate frame expresgbat would completely engulf the target object, should the
with respect to the heel coordinate frame. This cross prodiidrget object be centred atand be positioned ‘upright’, on
corresponds to the set of poses from which HR can expldtg pre-designated base side. The cylinder's medial axi®is
the scene. In more detail, tmeovement list (M L) is a finite parallel to the world coordinate frame’s z-axis.
set of coordinates that lie ip\;, X;] x [Y;, Y3] X [0, 27). The Assume we have executed actians..., v,,. We say that cell
movement list corresponds to all the possible positions ands a visible cell under statev, if cell ¢ lies in the sensor’s
orientations that we wish HR to consider for its heel cocmtin estimated field of view under state cell 7 is not occluded
frame at each iteration of the algorithm’s loop (Fig.2). Ifrom viewpointv by any obstacle in the obstacle map built
our online implementation of the algorithm, the movementsing the depth maps @f,, , ..., 1,,,,, and the intrinsic scale of
list is generated by uniformly sampling each dimension dlie projection on the image plane of target objedtit were
(X1, Xn] x [V1,Y3] x [0,27). The gaze list (GL) consists centred in cell, lies in the permissible range of intrinsic scales
of a finite set of 3D coordinates expressed with respect &b our feedforward hierarchy (Sec.ll-E). A sE{(v; vy, ..., v1)
the heel coordinate frame. All the points in the gaze listf cell indices denotes the visible cells. We estimate thet be
must be capable of being projected on the image centmatching intrinsic scale of a target centred in éeby the size
using an HR whole-body-motion command which does non the image plane of the projection of the target bounding
involve changing the heel coordinate framee-g, it changes cylinder centred in cell. In contrast to [5], the visibility range
head pant/tilt, body and leg posture, but not the feet positi for statev depends on the recognition scale, and not on the
The candidate hypotheses list(C'L) consists of the cross camera’s depth of field.
products of the movement list with the gaze list +e, Let v; denote a neighbourhood of constant radius centred at
CL = ML x GL. For each position of HR’s heel i?/ L, the cell i. Let e, (v;,v) € {0,1} take a value of 1 iff there exists
gaze listGL corresponds to a set of regions around the robatcell j in neighbourhoody; such thatj € V (v;v,_1, ..., v1),
that can be explored (“looked at”) without changing the heahd there exists an unobstructed path from the current posi-
position. Eachw € CL is mapped to a sensor statep(w) tion/sensor state,,_; to a position corresponding to state
that has the same heel coordinate framevaand has an eye as calculated by the path planner. Recall that the path ptann
coordinate frame such that the Gaze List pointgfrojects on only outputs paths for which, at any point along the path,
the frame’s image centré.€., if multiple sensor states satisfyHR’s bounding cylinder does not intersect too many obssacle
w, thenmap(w) selects one such state deterministically). and never-viewed cells. The intractability results in [H10]
We need to define a measure of “clearance” between Hifvtivate a solution to the next-view-planning for the CAOL
and scene obstacles, that will allow us to detect potentj@loblem, based on the greedy approximation to the Knapsack

B. Hypotheses Generation and Evaluation
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problem. Thus, the next sensor stafeis given by C. Updating the Target, Obstacle and Never-Viewed Maps

i t)\nf sy Un— 7"'7)\ ) n\" /iy
Up, :argmaXZ:lecp(cl| L On—1 1, 1)én (2, 0) (2)
veCL’ to(vn—lyv)
where CL’ = map(CL), the range ofmap(-) using CL as

its domain. We continue the search until we have reached S . . .
maximum search cogt’ specified in the CAOL problem. [I-E and proceed in this section by discussing the use of the

An important problem is that of determining good termina® outputs of this feedforward hierarchy (tharget confidence
tion conditions. One solution is to constrain the threstmgd MapP9 o update the target, obstacle and never-viewed maps.
by 6 in the CAOL problem, to cells that have been viewed atheorem 1. (Bayesian Target Map Updating) Assume
least once. As it is shown in [10], fusing multiple viewe(, p(An|ct, vny An—1,Vn—1,..s A1,v1) = p(Anlct,vy), p(cl]
fusing their obstacle maps, target maps and never-view@s ma,—1,vn—1, .., A\1,v1) = p(ct|vn, An—1,Vn—1, ., A1, v1).
with the corresponding maps we have built so far) requirdhen,p(ct|An, vn, ..., A1, v1) =
accurate dead-reckoning for the resultant target prababil . .
maps, obstacle maps and never-viewed maps to be accurate. P(Ci|An—1,Vn—1, -, A1, 01)P(AnlCi, vn) @
Dead-reckoning errors lead to an increased bias in thettarge 225 P(C[An—1,0n 1, ., A, 01)p(Ancf, vn)
localization and destroy any guarantees of a decreasiggttar
map entropy, making the probability thresholding of the TQAO  proof: See the Appendix. Since we condition an,
problem sensitive to errors and inappropriate. Howeveis it then p(u,, |ct, vn) = p(Anlct, v,) (See Def.1). The theorem’s
an inevitable fact that we need to continuously update th@cond assumption implies that positioning the sensomwith
target probability map, obstacle map and never-viewed rsapaquiring an image does not provide any information. m
a means of guiding the where-to-look-next functionalitoaf  Eq.(4) links the discriminative problem of calculating
localization algorithm. We, thus, take the middle road ase Up(ct[An, Vn, -, A1, v1), to the generative problem of modelling
the updated maps to guide the where-to-look-next behaw%{b\ lct,v,). Thm. 1 assumes that, is conditionally inde-
of the recognition algorithm. We search until the total cofst pendent of previous sensor readings/states, given thei cell
our search exceeds’, at which point, the algorithm outputsyhere the target is centred and given stateBy Assumption
as the target location the cell with the maximum single-view 1, exactly one instance of the target exists in the scene,

As previously mentioned, our localization algorithm relie
on a feedforward hierarchical recognition architectunat iis
inspired by human vision [36]. We postpone the discussion
%the training and construction of this architecture ugak.

generative probability across all acquired images: which implies that events!, v, are sufficient to determine

i £ argmax max (Al v). (3) which regions 0f>_\n (if any) may correspond to the projecti(_)n
ieC’  Jj€{l,...,n} such that i€ M(v;) of the target object on the image plane and which regions
whereC’ = M(v;) U...U M (v,), and for any;j € {1,...,n} must correspond to the background, making the assumptions

the functionM (v;) is asuperset of the cells ¥ (v;; v )that in Thm.1 realistic simplifications to our problem. Due to
contain an obstacle according fi9,’s depth map. Notice that the difficulty in modelling an image\,, with an arbitrary
V(vj;v;) uses data only from a smgle view. background, we are implicitly assuming that\,|ct, v,,)
The function M (v,) helps us deal with dead-reckoningdenotes a generative modelling of the recognition algorih
errors, and denotes thmarked candidate cellsof iteration resultant binary segmentation into the foreground (tapget
n. We say that cell is a marked candidate cell at iteratiorsition) and the background, based on a single view. Sigilarl
n if its centre lies inside a target bounding cylinder that i(c| A\, vn, ..., A\1,v1) denotes the corresponding probability
centred at some cell € V(v,;v,) which according to the of eventc!, based on the Bayesian fusion of multiple-views
depth map ofy,, contains an obstacle. As we will see inuy, ,...4t,,- The greater the uncertainty in spa®wv, ), the
Sec.lI-C, functionM (-) is also used to update the target mapeaker this assumption of conditional independence bespme
probabilities of cells which lie inside the object volumedandue to increased sources of erroesy(,dead-reckoning errors)
are, thus, occluded from all viewpoints. in the mapping of an object centred in céllto y,,. The
BecauseM (v,,) uses the depth map of only a single vievabove-described generative probabilities make it passibl
vn, We avoid many of the previously discussed problemgpdate the target map probabilities using Thm.1. Noticeé tha
caused by dead-reckoning errors. Fig.1 shows the marka@viously described object localization methodologikat t
candidate cells induced by an obstacle (the vase in the Jigu@pply a binary object detector on each input image,([5],
assuming that the target bounding cylinder of the objectree 49]) are not suited for use with Thm.1, due to their inability
searching for spans the grey cells and is centred in the @hll wdistinguish the foreground from the background in an image.
the obstacle. The estimation of the generative probaslitn For each new iteratiom, the obstacle map is updated by
Eq.(3), and their role in updating our maps, is discussed fmarking as occupied any cell that is found by our depth
Secs.lI-C to II-E. The advantages of Eq.(3) in object lazli extraction algorithm to contain solid structure. The never
tion are significant, since limiting the dead-reckoningoesr viewed map is updated at iteratienby marking as ‘viewed’
using standard vision-based SLAM approaches is non-riviavery cell index inV (v,,; v, ) UM (v,,) and leaving unchanged
We could further refine the detection accuracy, at the experal the other cells. Ideally, under good depth estimatiod an
of the localization accuracy however [10], by performing &mited occlusions, each cell in the target object’s volume
new search around the cells closest to a hypothesized taigetuding the target centroid, ends up as a marked candi-
position, to validate that those cells do contain the target date cell from at least one viewpoint. For each celle
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V(vp;vn)\M (v,) that had not been viewed at least once in cell 4, then by Bayes’ theorem(m(-;uv,v,t)\cf) =
before iterationn and no structure is found in it at iteration _

n, we setp(ct|\,,vn, ..., A\1,v1) = 0 by the assignment Put(CM(; 1y, v, 1))
p(Anlct, v,) < 0, implying that we consider it impossible to p(ch)

1
sense),, from viewpointu,, if the target is centred in cell.

For each marked cell that had been viewed at least once befg goal is to appropnately_mo_del the generative probkisi
iterationn, and was assigned(c!|An_1, vn_1 A1) = 0 of the feedforward hierarchies in order to calculate thebpro

due to it containing no structure (potentially due to stere%IItIeS in Eq.(5). We study some of the properties of an idea

depth extraction errors or dead-reckoning errors), wet tre:?ﬁrget confidence map and use these properties to motivate

that cell as if iteration: was the first time that cell becamel'® construction of a generative model for our localization
visible, by appropriately adjusting the probability valftem algor_lt_hm that shares S'”_“'ar properties. In general, "gem
the target map that is to be updated. We continue by defini firing rate at a conﬁdence_map p')@ the more I'k.ely
POt vp) for i € M(vy) and fori & V(un: v,) U M(v,) the target projects on that. position. This observation gdus
: ) in Thm. 2 in the Appendix. Intuitively, Thm. 2 formalizes
(see Eq.(4)), through the use tafrget confidence maps . ) )
. ) ) the ideal behaviour of the confidence maps, whereupon, the
Given a scene sample functign that was acquired under greater the belief that the target object projects on aqaai
sensor state, and assuming we are searching for obje@ image position (based on the firing rate at the corresponding
target confidence map is the output of our single-view recoggnfigence map position), the less likely it is that we would
nition algorithm on this input image. Such a target confi@engjiness at least that intense a firing rate if we were to pick
map can be thought of as a multiscale topographic map, thaf arbitrary pixel of the target confidence map. This simple
assumes values in the ranfe 1], with higher values denot- model motivates the algorithm for updating the probalititin
ing an increased likelihood that the target objeqbrojects gq (5) and for localizing target object positions by atiendo
with a given scale on the corresponding image region. Thejrarticular scale and position in the target confidence maps
construction is over-viewed in Sec. II-E. Fig. 1 overviews rrom Thm.1 and by the approximatiop(\,|ct, v,) ~
the process of using the confidence maps of an image, W/I("ﬂ vy )]et) (recall that by Def.1p(A |é¢ o) =
produce the corresponding generative probabilities that , |(¢_’v”")‘)’ v:/Ié ha\zle ([ A, v A1) = ne
used to update the 3D target map under Thm.1. Fig.3(b) a%%“” o PACilAn, Uns s AL U1

the supplemen.tary documentation provide fur.ther gxanmﬂes . P A1, Vn1s s A1 vl)p(C—>M(-;uvn,vn,t)lcﬁ)
the target confidence maps produced for various images. Th —

; S p(chAn1, v AL 01)p(CM(; o, v, £)ch)
value of the target confidence m&aM (-; i, v, s,t) Of py, G PG IAN=15 Un=1; s AL U1 7 Hony Uns 116

for targett at intrinsic scales (1 < s < V), sensor state |, gec |1-D we discuss how we deal with the high dimension-
and at map positiog = (i,7), is called, thﬁe‘mng rate, andis 4 of vector CM (i An, vn, ) V. We Use an approximation
given byCM(¢; 11y, v, 5, 1). We useCM(q; v, v, 7) to denote o3 (¢t 4, ) that models target uniqueness within each indi-
the N-dimensional vector of the target confidence map valugg;a| scene viewpoint and across multiple scene viewpoint
at positiong = (i, ) and across allV scales.
In Sec. II-E we describe how the target confidence maBs ) .
are built, based on the hierarchical recognition architect D- Interpolating the Probability
of [36]. The tgrget cpnfidence maps are constructed overThe high dimensionality of a vecta@M (: jtw, v, t) makes
seven scales in our implementationV (= 7 scales). The it preferable to do the generative modelling in Eq.(6), bylgp
range OfCM(%Mw%&?) lies in [0,1], with a higher vglue ing a dimensionality reduction technique @M (q; y.,,v,t)
implying a greater confidence that targeprojects on pixel ang keeping only the most relevant map information at each
¢, with a scales. The resolution of CM(;; 1y, v,5,t) IS gtep. We achieve this by attending only to the most rele-
t_he same for all sc_ales, and does not have tq b_e 'de”'vant intrinsic scales OC—>M(-;uy,v7t), and by building an
tical to the resolution ofy, (see Sec.ll-E). This is for- interpolation model for approximating(CM(+; p,,, v, t)|ct).
tmhahiad byd_ThrE. 2h ;Nh'cth IS ove_r-vgvl\v/;ad F)elow and "Mrhis section is devoted to this purpose. We begin by detailin
€ Appendix._tach func 'C?”f(') - (- ’””’U’s’t,) the abstract data types needed to define the “knots” of the
and g(-'). = CM(+; py,v,t) is a sample from underlying interpolation model fom(C—)M(~;uq,,v,t)|c§).
grob?bllﬁy rg(eas;reér(v, 5,t) = (f_(”*‘i‘ﬂf’ E”ﬁs’t’p”vs’t) and e useproji (i, v,t) to denote the confidence map intrinsic
(v:t) = (Xo, Do o) respectively, where,s «(f(+))  seale that best matches the scale of the expected projextion
andp,,(g(+)) denote the probabilities of samplirfy-) given objectt on the image plane under sensor stgtassuming the

v,s,t, and samplingg(-) given vt respectively. We use ., oovs centroid coincides with cells centroid. In practice,
CM(v, s,t) and CM(v, ?) tot denote th_e)correspondl?g TaNwe estimaterogq (i, v, t) as earlier when estimating the visible
dom variables. We lep(p.|c;, v) ~ P(_CM(’3/‘vavt)|ci) = cells, namely, by calculating the size of the projection @ t
p(CM(v,t) = CM(+; v, v, t)|c;), which allows us to deal jmage plane of the target bounding cylinder centred in cell
with the difficulty of modellingY'(v), by modellingY(v,t) e constrain our search on the target confidence maps with
instead. Similarly,p(CM(:; 1, v, 5,)|¢;) is the conditional an intrinsic scale ofroj, (i, v, t): p(CM(-; i, v, t)|c) ~
probability of CM(v,s,t) = CM(:; puy,v,s,t). If p(ch)

denotes the prior non-zero probability that the targetistroed p(CM(+; 1y, v, proji (i, v, ), t)|ch). @)

p(cHCM( pra, v, 1)). 5)

(6)
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Thus, the right-hand-side of Eq.(5) is approximated by specific measure of the uniqueness of each marked,cet
use p(ct|CM(+; iy, v, proji (i, v, t),t)) in conjunction with

¢ ) -

p(ei|CM(; o, v, proja (i, v, t),t)) x p(6;) to model a global measure of the target likelihood across
Posprojs (50,4t (CM(s o, v, proju (i, v, 1), 1)) (8) the multiple images acquired during search. Egs.(12)-{15)
p(ch) the Appendix specify the parameter values of the intermiat

model we will use to achieve this. Before Eqgs.(12)-(15) are

resented however, we need to motivate the construction of
the interpolation model and define the model parameters.
Recall the definition ofu, as a scene sample function
at was acquired under sensor statésee Def.1). Assume

Given a target confidence map for sensor statgrojs(i,v)
denotes the pixel on the target confidence map on which
centre of target map cell projects.

In accordance with the monotonic behaviour of the ideg|
confidence maps (Thm. 2), we use the cumulative distributid , . . :
of CM(+; py, v, proji(i,v,t),t), based on the histogram of m”N(“”’qf’tﬁ i) € [0,1] is the ratio, V\,”th respect to the total
the pixel firing rates induced by visible cells that lie in ouf"€@ Of#’S image, of the area op.’s image taken up by
search space, to ensure the monotonicity property of Thm:d’ﬁa pro!ectlon of t'he bqgndmg cylinder of targetassummg
is preserved for the arbitrary probability distributiomst can 2/9€tt is centred in celk in the scene. ThetopN (uy, v,t, 4)

occur in practice and to provide an image specific measure'f%fde“ncel\(jI a,s the smqlle; t VtalLie n Ttejr\\[/al [0’1g t,hatjat's'
uniqueness. Thuiy, iz, 0 < i < ip < 1 we have: les p ("“,”’U’PT.OJl(Z’v’ ),t) > op-: (po, v, 8,4)) <
Bropn (1o, v, t, 7). Similarly, top(u,,v,t,i) is defined as the

p([i1,1] € CM( - ; v, proji (i, v, t),t)) ~ smallest value in interval [0,1] that satisfies

PO 0,701 (110,06 1) > P(CM(: v proji i, 0,0.1) > top(us v, .9)) = 0. Fi-
CM(-: o D)) > i) A nally, bottom(u,,v,t,i) is defined as the largest value in

p( . (',vavvpmﬂl(la”’_ )? ) 2 i2) interval [0,1] that satisfiep(CM(:; ., v, proji (i,v,t),t)>

p([i2, 1] € CM( - ;v,proji (i, v,t),t)) (9 bottom(py,v,t,4)) = 1. Typically, as is the case in our

where the second and third probabilities are calculatenigusiccdforward hierarchyyottom (u, v, ¢, 1) = 0.

the corresponding histogram GEMI(-; 1., v, proja (i, v, £), 1), For targett and intrinsic scales, we definecer(s,t) as the

: . o ual error rate of the corresponding confidence map’s firing
as described above. The first and fourth probabilities argces. The equal error rater (s, ¢) is the firing rate threshold

defined in Thm.2 and denote the expected fraction of firin hen it i equally likely for a confidence map firing rate above

rates in a random confidence map, that ligiin 1], [io, 1]. S
. map e[u%r; by [i2, 1] or below that threshold to represent a false-positive otsefa
The firing rate corresponding to an object whose cen-

troid coincides with the centre of celi, is given by negative with regards to tgrgetproject_ing ata sc.alle - The
CM(proja(i, v): fio, v, proji (i, v, £),). By Thm. 2, if we equal. error _rates are estlmateq durlng'the tralnllng_ process
have a “good” recognition algorithm, the more likely thegetr ovzrweived n Sec.tII-E. (-;T\;SL_ |dea:!y, = prfht(z’vj
object is centred in cell — based on an increased firing raté o & :/pm]l(l’v’ ), P ﬁq’v’ﬁ.’ r)] = c}fir(s’lﬂ')'if;) -
i1 = CM(proja(i,v); iy, v, proji (i,v,t),t) for example —, p(CM((,]’ 0 S’t), < eer(s-,t)\ﬁci)-, which implies that for all
the smaller the value Qf( CM(-: o, v, projs (i, v, £), £) > i1) scaless . eer(s’,t) provides a firing rate threshold which is
is, signifying the rarity and importance of the image regio equally likely to represent the presence and the absendeof t
y . e s = r%arge’[. We use the equal error rates to normalize the firitegra
The rarity of this firing rate, within the context of the firing | d make th ble with h other
rates present in the current confidence map, is used in tbe pﬁcgssAssgjrﬁ;t% I:] 1maio?preesnsmﬁi?$p;nra} deeal conzggncoe rﬁép

placed in the numerator of Eq.(8), which leads to: if the target is present in,, then part of the target must

p(CM(+; 1, v, 1)|ch) = project somewhere on the image with a firing rate of at
. o »(B3i) least topN (uv, v,t,1), effectively meaning that any image
P(C¢|CM(';MU,v,PmJl(Z,v,t)J))p(d)~ (10) region with a firing rate less thatopN (u,, v, t,i) does not

correspond to a target projection. In conjunction with the
where p(3;) 2  p(CM(; pe,v,proji(i,v,t),t) > single image specific measure of uniquengés;), we use
CM(proja(i,v); o, v, proji (i,v,t), t))~= the equal error rates to normalize the firing rates acrodssca
Poproji (iw,),t (CM (5 iy, v, proji (i,v,t),t)).  Based on and make them comparable to each other, thus, adding a
Thm. 2, the smaller the prig#(3;), the more likely the target global measure of uniqueness across all captured imagels. Ea
is centred in pixelprojz(i,v). Notice that in contrast to of topN(uy,v,t,7), top(t,v,t,3) and bottom (g, v,t,1) is
Do, proji (i,0,6),t (CM(:; o, v, proji (i,v,t),t)), p(0;) provides mapped to probabilities;,n (1w, v, t, %), Prop (v, v,t,1) and
a localized measure of uniqueness, arogmdjs(i,v) and Drottom (1w v, t, 7) respectively, using linear functions (defined
within the context of a single-viewu,, as a means of in the Appendix) which take into account the effects of the
compensating for our poor knowledge of probability spacequal error rates. As we will see, these normalized probabil
T (v, proji (i, v,t),t) and our consequent inability to calculatéties specify the “knots” of the interpolation model at tare
Poprojs (i,0,6),t (CM (55 oy, v, proj (i, v,t), t)). possible values of(g5;).

We proceed by using an interpolation scheme to modelWe noMave the means of presenting the approxima-
the probabilityp(ct|CM(+; u,, v, proji (i, v, t),t)). We begin tion to p(CM(:; u,, v, t)|ct) used in Eq.(6). As hinted by
by stating some definitions and some of the properties thad.(10), we can estimate this probability by modelling
the probability must satisfy. While(3;) provides an image p(ct|{CM(:; u, v, proji(i,v,t),t)) as a non-increasing func-
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tion of p(3;) that also depends Q®,, N, Poottom, Props P(ct), Of p(B;) — and a global measure of uniqueness across all

Bropn and satisfies the following constraints: images — we take into consideration an absolute measure
(i) p(c!|CM(+; o, v, progi (i, v, t), t)) < min(1, z>§;;))>_ of uniqueness across all images, via constrafits- (v). In
@) f p(B;) = Bropn(po,v,t,3) > p(ch), thén the conjunction with Egs.(6) and (10), this completes the discu
probability p(Cl\/f( M’U pmjl(l 1), t)|ct) is set sion on updating of the target map probabilities when cell
BOUAL 10, P |CM( s pras (ot EEE = 1€ V! (0n) 2 V(i 0n) U M(un). I i £ V' (0), We use As-
E ple;) sumption 1 to set an equal generative probabitity? V' (v,,),

PtopN (ﬂvv v, t, Z)
(i1d) If p(B;) = 1 > p(ct), then the probability
p(CM(+; iy, v, proju (i, v,t),t)|ck) is set equal

by letting p(A, [c}, vn) < minjeyr(y,){1 = p(Anlch, vn)}-
Notice that by our construction of the generative probabili
! v ties, p(A, cﬁt,vn ~ 1 wheni; € V'(v,), wherei, is the cell
to p(CHCM(:;/“‘U’”’pmjl(z’v’t)’t))g((ff; - where( th(|a targe?t object is centrecg. (%ne might argue that our
pbottom(“v’ v, ;1) formulation is incorrect since typically”, p(A|ct,v) > 1, for
(iv) I p(B:) = p(c;), then the probabilityp(CM(; ahitraryi. However, as we see from Eq.(4), for alK i < le]
“v’v’p’"ojlgl’ v, t »i)‘c) is set equal top(c{[CM(;  the discriminative probability(ct| A, U, ..., A1, v1) is inde-

)
MU,U,pTOﬁ 1,0, )

] )) p(ch) ) = Ptop (b, 0, £,7). pendent of scale factors applied on the generative pratiesil
() If p(B;) < p(ct), then the probability p(CM(:; p(An|ct, v,), implying that the ratios of the generative prob-
1, v, proji (i,v,t),t)|ct) is constant for allp(3;) < abilities is what characterizes Eq.(4), and not the indisid
p(ch) and is set equal tPy,y iy, v,t,1). magnitudes of the generative probabilities.
Constraints (i) — (v) guarantee  that if

p(CM(-; fuy, v, proji (i, v,t),t)|ct) > 0.5, the firing rate E. Building the Target Confidence Maps
of top(p,v,t,i) exceedseer(proji(i,v,t),t) (providing a  To calculate the target confidence ma@&V(-; i, v, )
global measure of uniqueness) auih;) is sufficiently small of targett for a given RGB input image that was acquired
(guaranteeing local target uniqueness withyy). The higher under sensor state (e.g, scene sample functiop,), we
the value of p(CM(:; ., v, proji(i,v,t),t)|ct), the more apply a multi-scale convolutional template matching. Tisis
likely it is that the target projects on the image plane angbt done on the original RGB images but on the output of
comparisons of the generative probabilities across @iffer the hierarchical feed-forward architecture described etaitl
1, become meaningful. Furthermore, the definitionpaf,x  in [36] and over-viewed in this section. This architectuse i
guarantees that ip:,,y = 0.5, the number of cells that pased on weight-sharing and a succession of feature detecti
can be assigned(CM(-; uy, v, proji(i,v,t),t)|c;) > 0.5iS and pooling stages (see Fig. 3(a)) and is meant to simulate
constrained by the expected projection size of the targetbb some of the shape processing mechanisms of the ventral visua
on the image plane. Notice that fp(s3;) = 0, Eq.(10) has a pathway. As it is shown in [40] and Fig.3(b), this recognitio
value of zero. However, the valyg3;) = 0 signifies a rare model can be trained interactively in an online fashion for
event for which we would like to assign a high probabilityyp to 50 arbitrary objects by manual demonstration, using
to Eq.(10), which is why we treat the cagés;) < p(ci) unconstrained in-hand rotation. Unlike other methodse lik
separately (remember tha(c;) # 0 for any updated cell SIFT-based recognition, it imposes no constraints on gtron
i). Notice that in our online test runs, we assign a uniforflanar textures or canonical views of the objects.
distribution to each cell in our search space, which implies The first feature-matching layer S1 is composed of four
that Vi, p(ct) << 1, meaning that in practice cage) plays a orientation sensitive Gabor filters. We use a thresholdtfanc
role for very few cellsi and BN (110, v, t,9) > p(c}). to apply a Winner-Take-Most mechanism between features
As long as we modep(c;|CM(:; u,, v, proji(i,v,t),t)) located at the same position in each map. The subsequent
as a non-increasing function @f3;) that also satisfies con- C1 layer, sub-samples the S1 features by pooling down to
straints (ii) — (v) from above, it will also satisfy constrainta quarter of the original resolution in both directions,ngsa
(1), making p(cf|CML(:; uy, v, proji(i,v,t),t)) a valid prob- Gaussian receptive field and a sigmoidal nonlinearity. T fi
ability. We model p(c}|CM(:; iy, v, proji(i,v,t),t)) as a features in the intermediate layer S2 are obtained by sparse
piecewise differentiable and non-increasing functio@$;) coding and are sensitive to local combinations of the festur
composed of piecewise components of the fogfif5 + 7, from the C1 layer. Layer C2 again performs spatial pooling
for each intervalj, which reduceg(u,|ct,v) to a function and reduces the resolution by half in each direction. Th fift
of p(8:)s Drop (fhws U, 1), Propn (Lo, Uy £, ), Dbottom (v, ¥, t, 1),  Shape maps in C2 are extended by three color maps, generated
p(ct) andBiopn (1w, v, ¢, ), that is piecewise linear in terms ofby down-sampling the RGB channels of the input image.
p(8;). An LU-decomposition provides the solution fof3;) € The templates are trained by acquiring one-thousand views
[p(ch), Bropn (1w, v, t,7)] (Specified by assigning values to theof each one of the target objects. Fig.4 shows examples of
parametersas,vy1) and for p(8;) € [Bropn (i, v,%,4),1] views of the objects used in our results. The objects are held
(specified by assigning values to the parametessys). in front of a cluttered background and frames are grabbed
Analytic expressions for these parameters are in the Apsing HR’s stereo camera system. The region containing the
pendix. The approximation ofp(u,|ct,v) by modelling object is determined based on a depth criterion and is scaled
p(CM(:; py, v, proji (i, v, t),t)|ct), provides a compromise to a fixed output resolution, as described in [40], [41]. Besi
between modelling an image specific measure of uniquendiss object views, a large set of clutter views are collected a
— recall thatp(CM(+; uy, v, proji (i,v,t), t)|c!) is a function used as negative training examples.
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Fig. 3. (a)Feed-forward architecture of [36]. The architee consists of a shape path and a color path. The shape pasists of several layers. The
S1-layer convolves the gray-scale image with gabor filter4 dffferent orientations and computes a Winner-Take-Mosilinearity. The C1-layer pools the
magnitude of the results to a lower resolution. The S2-laggpeonds to local combinations within the Cl-layer and thda@@r performs an additional

pooling. The color path splits the input image into its RGBrafels and down-samples them to match the dimension of the pla@& (b)Training and use

of SLPs. In the training process object views were preseintelifferent scales to generate scale-sensitive SLPs omft@2. In the recognition process the
receptive fields of these SLPs were shifted over the C2-laf/éme whole scene to get a position and size-sensitive nsgpadn the form of target confidence
maps over seven intrinsic scales. The size of the target tshjmojection on the image plane, specifies the intrinsidestzat returns the best response.

The template responds strongly to views of the currepbsitive and false-negative rate of detection as a funabibn
object and responds weakly to views of other objects oralutta threshold parameter. The equal error rate (EER) denates th
We train a single layer perceptron (SLP) for each combinatithreshold value where both false-positive and false-magjat
of object and scale. We use an SLP with a sigmoidal norates are equal. Fig. 4(c) shows that some objects have a
linearity to restrict the output range t®,1]. For a given very low probability of being confusede(g, objects 4, 7, 9)
scale, first the images in the database are down-sampled amie for other objects, this separation is worse (esphciat
afterwards, their C2 activations are calculated. Then, lad Sobjects 13, 14, 16). These results are reflected in the di@iua
is trained for each object, using its own views as positivef the object search performance in Secs.lll,IV. Despits¢h
examples and all other views as negative examples. differences, the chosen representation and processingtis n
gonstrained to certain types of objects since HR can learn a

The training is done for seven different intrinsic scale : : .
(1<s< 7)gcovering object sizes betwedht x 64 and representation of the target object directly before thectea

160 x 160 pixels from input images oB00 x 600 pixels.

During the search for a certain object, the correspondiugrse lll. EXPERIMENTAL SETUP
scale-sensitive template SLPs are used to convolve the £2Test Protocol

activation of the curren'F Input image, as §hown n F'g' 3(b). We evaluate the active localization algorithm by its reli-
The output corresponding to each scale’s SLPs defines gbe

) ) ility and speed in localizing the target objects. To eval-
target confidence ma@M(; i, v, 5, ). Examples of target ate our method systematically and in a reproducible way,

gﬁgg?eemngit;;ﬁa'ggl cr;:)lélﬂfrﬁnfact?cl)is are available in t % record a number of data sets, and use these i_n pﬁline
' simulated test runs. We also perform real-time tests viedfy

To train the SLPs, we use 800 views per object. The rthe online performance. We test our algorithm by searching
maining 200 views are used to evaluate the offline recognitifor twenty different targets (Fig.4) under five differentste
performance. When classifying a test image by determiniag thcenarios. Note that the search space in Scenarios 3,4,5 is
maximal activated SLP, we observe that for the smallesescadignificantly larger than that of Scenarios 1,2 (see Figr).
views of different objects are confused in about 25% of theach scenario, all target objects are positioned in theescen
cases, whereas, for the largest scale, the error rate was 19%right’, on their pre-specified bases. The cost function i
However, in this work the task is not object recognitio.( Scenarios 1,2,3,5 is defined as(v,—1,v,) = c1 + cad,
competition of different object hypotheses), but locdlma and depends on the optimal path distante chosen by
of a pre-specific target object. Therefore, it is more immatrt Dijkstra’s algorithm, where constant, denotes the inverse
to determine how well the SLPs corresponding to the targef, HR’'s walking speed and, is the expected processing time
separate its views from all other input (views from other olfer all other components in each iteration of the algorithm’
jects but mainly clutter views). This is addressed by mednsloop (Fig.2). The target, obstacle and never-viewed mages ar
an ROC analysis which shows the relation between the falgkscretized usingcem x 5em x 5em cubes, as in [5]. Scenarios
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Fig. 4. (a) Random samples from the training set used to leach ef the twenty objectslarget 1: Hole PuncherTarget 2: Fruit Tea Box.Target 3:
Gatorade BottleTarget 4: Tiger Duck.Target 5: Opel Race CaiTarget 6: Textured CupTarget 7: Red “cafe” mug.Target 8: 7up Can.Target 9: “Notarzt”
Ford. Target 10: Space NokiaTarget 11: Tea Pot.Target 12: Capuccino BoxTarget 13: Horse.Target 14: White Tiger. Target 15: Asimo Sitting. Target
16: Elephant.Target 17: Garlic PressTarget 18 Koffee Dose CanTarget 19: Stapler.Target 20: Compo Fertilizer. (b) The recognition model is trained
by manual presentation of each of the twenty objects, with @@tions covering the expected robot viewing variation.Equal error rates for each of the
twenty objects. The bar lengths denote the variation of theakerror rates across the seven scales used.

Target 19 Target 20

(b) ©

1 and 2 investigate the performance of the algorithm as thetentially small errors in making these measurementgj-dea
number of possible viewpoints from which the search regsontieckoning errors in the estimates of the heel-positionshé t
sensed, increases. The comparisons between SceBagiod samples of our dataset, small stereo depth estimatiorseasr
4 quantify the benefits of using the greedy next-view-plannerell as irregular object surfaces. We, thus, define two metri
(Scenario 3), as compared to simply moving at each steplkased on which the results in Sec. IV are built:
the scene position where the probability of detecting thgeta ~ Theimage scoreof a particular scene sample functipp, is
is maximized (Scenario 4), by having(-,-) always return a defined a&naxjeM(vi)p()\i|c§,vi), the maximum generative
constant movement cost value in Scenario 4. The compariggobability of all the marked candidate cells of stepThe
between Scenarigsand5 quantifies the benefits of using ourmaximal target imageim.,,., of a given test run, is the image
greedy where-to-look-next algorithm (Scenario 3) as opgoswith the highest image score amongst a Saif images. We
to randomly searching for the target, by assigning a randafaefineS as the largest subset of the set of images captured dur-
score to each of the candidate hypotheses C'L’ in Eq.(2) ing the test run, that satisfies the following constraii; € S,
for which there exists a path from the current sensor state3,, € M (v;) such that the centroid of cel},, projects on the
statev (Scenario 5). The comparison between Scenariasd target object in image\;, j,, = argmax ¢ M(vi) p()\i|c§,vi),
5 quantifies the role that the target maps play in choosing thed the estimated ground truth of the target's centroid & th
best next view for detecting the target, when we ignore theorld coordinate frame (estimated using a measuring tape, a
sequence cost functioty (-, ). In Section 11I-B we describe previously described) is within distane®f cell j,,'s centroid.
each scenario’s dataset in detail. Notice that since Simmnar For each image in a test run, there corresponds an image
3,4,5 differ only in the next-view-planner used, the sangcore and the 3D world coordinate of the associated cehelf t
offline dataset is used in these three scenarios. For each3bfcell of an image score falls withi20cm of the expected
the five scenarios, we execute 80 test runs. In these 80 te@gget position, by projecting the 3D coordinate of the cell
runs, we search for each of the 20 objects by starting thack in the image plane we visually determine whether the
search from the four positions shown in Fig.5. image score was due to detection of the object, independentl
of dead-reckoning errors. As we discuss in more detail in
To evaluate the search performance in each scenario, 8&c.1V, by finding fore = 20cm the maximal target images of
use the ground truth position of all the objects in the sdepnarnumerous test runs, and by investigating how their resgecti
with respect to the world coordinate frame. For each objeichage scores rank compared to other image scores, we obtain
in each scenario, we measure its position (its centroidhén ta good evaluation metric for the algorithm.
world coordinate frame using a measuring tape, as a means diVe use the Small Vision System by SRI International for
evaluating target localization reliability. However, ngithese the stereo depth extraction [42]. Our system was developed
measurements alone by themselves, to determine whether kifithg a set of tools created by Honda for building large scale
has localized the target, is insufficient. This is because distributed intelligent systems [11]. These include corgrt
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models BBCM and BBDM (Brain Bytes Component/Datd
Model respectively), design and monitoring systems, amd
middleware RTBOS (Real Time Brain Operating System) fd
executing the component models on a variety of comput
platforms. The diagram in Fig.2 outlines a component-wis
breakdown of our system. All component models are coded
C. We employ the walking algorithm and whole-body motior
control system that was developed for use with HR [43]. i

We use a hypothesize-and-test next-view-planner and as @)
such, it is easily parallelizable. We take full advantagehi$ am im am
to make our system real-time and suitable for live demonst
tions. To speed up the algorithm, the hypothesis evaluati
for the next-view-planning is applied on a coarser scal

O
5
3
o
SHELF 2
o
&
3
‘E
I
m
u
=
o
3

of the target, obstacle and never-viewed maps, by reduci | am am
the resolution of each dimension of the maps by half. Th ” N 12m| | TaBLE
neighbourhoods; in Eq.(2), correspond to the dimensions o E’?ﬁ T

the cells used in these coarser-scale maps. Furthermere, | .. v e o ,@0&*“’ o
hypotheses are evaluated in parallel on eight threads mgnni— e
concurrently on a server with two Quad-Core CPUs. (©) (d)

Fig. 5. (a)Scenario 1 and 2 setup, with targets 1-10 situatethe table.
B. Test Dat (b)Scenario 3,4,5 setup with all 20 targets present in tlemescas viewed
- lest Data by HR’s head camera. (c)Bird’s eye view of the setup of Scesatiand 2

We now describe the creation of the offline datasets. In Zfthin a3m x 3m maximum walk and search region. (d)Bird's eye view of
. . L e setup of Scenario 3,4,5 in tHen x 4m walk and search region. Points

scenarios, HR starts the search from four different ini@l A g c b represent the four different starting positionsH.
positions A, B, C, D, as shown in Fig.5(c),(d). We have also
implemented an online version of the system, which works
in real-time ¢; ~ 3s, c2 = 3s/m in the cost function) and 11-20, targets 11-20 are positioned on the table. A separati
thus, does not rely on the view-sampling data of the offlingall is always placed bisecting the table’s surface to lithé
version of the loop. The online system is currently beingdus@umber of viewpoints from which each target is visible.
for real-time demonstrations of this work, in which HR pagint In Scenario 1, we create the offline dataset HR uses, by
at the object once it is localized. A demonstration of onlinkaving HR sample the search space by facing the table while
search is available in the supplementary material sectfon Simultaneously walking sideways with.5m step intervals
the journal. Online and offline search differ in that the a#fli around the periphery of 2 by 2m square path centred at the
dataset is created by acquiring one sample image for eaable’s centre (Fig.5(a)). At each step, HR acquires sixgiesa
element in a seCL” C CL (see Sec.ll-B), and thus forand the corresponding heel coordinate and eye coordinate
the offline testing, the optimization in Eq.(2) takes plavero frames of HR, that uniformly sample the search region, for
the corresponding subsetp(CL”) C CL’, while the path a total of 102 pairs of stereo images(, |CL| = 102). Each
planner still optimizes its paths ovéd L’ (see Eq.(1)). one of these image pairs represents a candidate hypothesis

Scenarios 1 and 2 (Fig.5(a),(c)) take place insid&rax which is evaluated when determining where to move next.
3m x 1.5m search region and involve placing the targetShis allows us to perform rigorous and exhaustive testing of
on a table with alm x 1m surface area ab.84m height, the algorithm’s performance, that is difficult to perfornmings
and having HR search for each of the twenty targets an online version of the loop. Note that the order in which
a 1.2m x 1.2m x 1.2m region encompassing the table. Inve acquire the images is irrelevant, and what is important is
Scenarios 1,2, the target map’s prior is uniformly distrélili to have accurate information on the heel coordinate frande an
inside thel.2m x 1.2m x 1.2m region and is assigned a zeradhe eye frame coordinates under which each image is acquired
prior probability everywhere else in the search region (sé®e Scenario 2, we enlarge the set of images, by having HR
Fig.5(c)), effectively instructing the algorithm to igmothe walk around a2m by 2m square path and &m by 3m
zero probability regions. Notice that since these zerorprisquare path centred at the table’s centre, while mainginin
probability regions do not contain any solid structure, ouhe samel.2m x 1.2m x 1.2m uniformly distributed search
algorithm assigns them a zero target map probability (sepace region, and using5m steps with HR always facing
Sec.lI-C), even when their prior is not set to zero. So byrggtt the table (Fig.5(a)). This enlarges the set of images/cateli
certain regions to a zero prior, we are effectively investiity hypotheses to 252, gives greater variability in the scaliés w
the algorithm performance when searching regions comigiiniwhich each object is sampled, and increases the number of
mostly solid structure and occlusions, where a recognitimandidate hypotheses, while maintaining the Scenariodr.pri
algorithm is needed to determine if the target object isgmes  In the last three scenarios (Scenarys4, 5) we enlarge
We place 10 objects at a time on the table. When we diee size of the search space and the number images/candidate
searching for one of targets 1-10, targets 1-10 are positiorhypotheses. The search space consistsbfiax 4m x 1.5m
on the table and when we are searching for one of targe¢giion (Fig.5(b),(d)) with the same table centred inside th
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25The mean distance covered at each step of Scenarios 3,4,5 The mean target map entropy at each step of Scenarios 3,4,5
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Fig. 6. The mean distance covered for each executed hypsthieStenarios Fig. 7. The mean entropy of the target maps for all twenty objfmtthe first
3,4,5 (we graph the first 30 executed hypotheses), using tifferent next- 30 executed hypotheses of Scenarios 3,4,5. Notice thatréreslg algorithm
view-planners: The greedy algorithm, using a constant costtion and consistently outperforms the entropies of the constant mest-view-planner
a random next-view-planner. A single tailed t-test showat tthere is a and the random next-view-planner. A single tailed t-testshthat there is a
statistically significant differencep(~ 0.02) between the constant cost andstatistically significant differencen(< 0.001) between all three pairs of next
random planner. Between the other two pairs of next-vieanpérs thep-  view planners.

value is smallerg < 0.001).

] N ) in this paper. In Scenarié we assign a constant value to the
bottom3m x 3mn region and two shelves positioned in the t0peost of each movement, effectively making the cost function

most and left-most part of the region, as shown in Fig.5(dhgependent of the current position of HR. As long as the
The target map prior is set to a uniform prior distributiorgat entire walk space is accessible from each position, thetaohs
1.2mx 1.2m x 1.2m region containing the table and at th_e tOPzost scenario is independent of HR's starting position. In
mostlm x 4m > 1.2m and left-mostlm x 1m x 1.2m region - geenarios, we randomly choose the next movement from the
containing the shelves, as shown in Fig.5(d). This specifi¢g10 nypotheses available in our dataset, as per Sec. llI-A.
the volume we want to search for objects. Everywhere elsey is a pipedal robot, with good dead-reckoning precision
in the search region, the target map prior probability is Sebmpared to typical wheeled robots. This allows us to focus
to zero as per Scenarios 1, 2. This zero prior can speed 4ip the object localization problem, without worrying about
the search by pre-specifying large empty-space regionshwhine errors in localizing the position of HR within the map.
cannot contain the target object. Such zero-prior regiomdc A |ong as HR completes its search within a certain number
be specified mam_JaIIy or determined automaucal_ly befoee thy steps, we can assume that HR’s dead-reckoning is fairly
search starts, using vision sensors or range finders (lasgt8yrate. In order to quantify this claim, in most sequences
and sonars are more reliable than vision sensors are gi.aptyred images, HR started and ended from the same heel
poorly textured regions) in conjunction with standard SLAM,o(dinate. In none of these cases where the error was quan-
algorithms, since empty regions obviously cannot conta@ tifieq, was HR'’s ending heel position more than abblim
target qu?Ct(S) we are searching for. Notice, howevet,dba 44y from its starting heel position. In all cases HR covered
system’s implementation does not presuppose the exisnce, (ota) of 8-20 meters and rotated a total of roughly 360-720
such zero priors, nor does it necessarily require them 'Brorchegrees, demonstrating good dead-reckoning precisioth Bo
to function correctly. If we are dealing with an environment, ihe online mode and in the offline mode — during the
whose obstacle layout does not change significantly oves, tinytine dataset creation — HR lost most of its dead-reckoning
the use of such zero prior regions is preferable, as it woylflacision during rotations. We, thus, minimized the number
result in faster search times during future online searcis,ru ¢ rotations performed during the dataset creation. Foh eac

by inhibiting the costly rediscovery of large obstaclestthgyecuted path, HR either walks (forwards, backwards, side-
affect the path planner. Five objects are placed on eacff srwéys or diagonally) or makes an on the spot rotation, and
and the other ten objects are placed on the table. HR creafggiqs high-curvature turns while walking.

the offline dataset by moving around the periphery éfraby
2m square path and25m by 2.5m square path centred at the
table’s centre in a clockwise and counter-clockwise dioect
Each step interval i8.5m long. For each step, fifteen images The goal of this project is to have HR search in a room for a
are acquired, uniformly sampling the region in front of HRertain object and once the object is found, to have HR point a
(pan range [-80, 80] degrees, tilt range [-15, 30] degrees), Therefore, one metric based on which we judge the quality
resulting in fifteen images/candidate hypotheses for etegh s of our localization algorithm is the number of pointing acis
Since HR moves in both a clockwise and counter-clockwig¢R would have to execute until it points at the correct object
direction, for each heel position thirty images are acqlireThe target rankis the metric that we use for this purpose:
densely sampling the entire search region. This result4 191 Assume we are given a list of the image scores for all the
images/candidate hypotheses that HR can choose from fordistinct images captured in a given test run, where the qunce
next view {.e.,|CL| = 1110). In Scenarid3 we use the above of an image score was defined in Sec.lll-A. Also assume that
set of candidate hypotheses to test the full algorithm dlesdr the image scores are sorted in descending order and based on

IV. RESULTS
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Target rank distributions across all Scenario 3 test runs
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Fig. 8. (a)-(e)The distribution of the target ranks for thettruns of each one of Scenarios 1-5 respectively. (f) Theilolition of the global ranks for all
five different scenarios. Any global rank that is unknown loaittis greater than thirty, corresponds to one tick in thelbirelledU. Detailed tables of the
results on individual test runs from which these tables @mved, are available in the supplementary material secticheopaper.

TABLE |
THE MEANZSTANDARD DEVIATION AND THE MEDIAN NUMBER OF EXECUTED HYPOTHESES(hyp) AND DISTANCE COVERED IN METERS(dist) UNTIL
THE MAXIMAL TARGET IMAGE IS ACQUIRED, USING THE TEST RUNS WHERE THE TARGET IS ASSIGNED A RANK OF ONE = 1), USING THE TEST RUNS
WHERE THE TARGET IS ASSIGNED A RANK OF AT MOST THREKEd < 3), USING THE TEST RUNS WHERE THE TARGET IS NOT ASSIGNED A RANK OF
(d < U) AND USING THE TEST RUNS WHERE THE TARGET IS ASSIGNED A RANK OFTAMOST U (d < U). NOTICE THAT FOR CASEd < U, IF IN A
CERTAIN TEST TRIAL THERE IS NO MAXIMAL TARGET IMAGE (THUS BEING ASSIGNED A RANK OFU IN TABLES |,Il), WE USE THE TOTAL NUMBER OF
EXECUTED HYPOTHESES AND THE TOTAL DISTANCE COVERED IN PERARRMING THE CALCULATION. to = ¢1 - hyp + c2 - dist, WHERE ¢1 = 3s,
c2 & 3s/m, PROVIDES AN ESTIMATE OF THE EXPECTED RUNNING TIME OF THE ONNE SYSTEM, UNTIL A TARGET IS LOCALIZED.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
mean median mean median mean median mean median mean median

d=1

hyp : 6.3+ 3.1 6 6+ 3.6 5 12.9 + 6.8 11 14.9+9.9 17 13.8 £ 8.9 16
dist : 10.4 + 5.6 10.8 10.4 + 6.6 8.7 12.8 £ 7.5 12 27.8 £ 17.2 31.0 26.5 + 17.4 26.9
d <3

hyp : 6.5+ 3.1 6.5 5.9+ 3.5 4 12.9+ 6.7 12 14.5 + 8.8 17 13.8 + 9.2 12.5
dist : 10.8 + 5.7 10.9 10 + 6.6 8.7 12.6 + 7.3 11.9 27.4 + 15.1 31.0 25.4 +17.2 22.6
d<U

hyp : 6.1+ 3.2 6 5.9+ 3.5 4.5 128+ 7.1 12 12.9 + 8.7 9 14.8 +£9.2 14.5
dist : 10.4 + 6 10.8 10.3 + 6.8 8.7 12.2 + 7.8 11.9 24.2 + 15.1 20.7 27.3 +17.1 25.8
da<u

hyp : 8.1+ 4.1 8 7.7+ 4.2 9 17.5+ 9.9 15 17.4 £ 11.0 20 24.3 + 10.6 31
dist : 12.4+ 6.2 13.6 12.9+ 7.3 15.1 15.6 +£ 9.1 14.6 31.3 + 18.7 32.5 43.1 + 18.6 52.2

this sorted order, HR sequentially points at the corresimand it typically takes to localize a target in each of the diffare
image score cells. The target rank of this test run is definedenarios, as explained in the table caption. As explained i
as the position in this sorted list (its “rank” in the list)f othe caption of Fig.8, the figure’s first five sub-figures show
the image score corresponding to the maximal target imagiee distribution of target ranks for each individual scémar
Ideally, the target rank has a value of 1, indicating that thehile Fig.8(f) is the distribution of global ranks from all/é

first object HR points at is the object it is searching for. ¢f nscenarios, where for notational convenience any globédt ran
maximal target image is found in a given test run, we assigmat is unknown {J) or is greater than 30 is placed under the
an “unknown” rank, denoted by symbbl. Theglobal rankis bin labelledU. Detailed analytical results of all the test runs
similar to the target rank, only that the rank is evaluatethwifrom which the relevant graphs and histograms are derived, a
respect to the images acquired from all four starting pmsiti available in the supplementary material section of therjalr

A, B, C, D of any given scenario and any given object. Thugxamples of the walk paths chosen by HR, as well as examples
for every global rank value, there correspond four targeksa of how the obstacle maps and target maps evolve over an
Fig.6 and Fig.7 compare the average distance covered @xécuted test run are also available in the supplementary
average target map entropy respectively for Scena&jds 5, documentation. We also performed a number of test runs with
and for each executed hypothesis. Table | quantifies how lotig online version of the active search algorithm, by seagch
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for some of the targets that the offline test runs indicate areFrom Table | and Figs.6,7,8, we can compare the perfor-
reliably localizable (targets 1,3,4,6,7,9,11), in ordeconfirm mance of Scenari@ vs. baseline Scenarios (constant cost
that the search reliability implied by the offline tests,calsfunction) ands (randomized cost). From Fig.6 we observe that
generalizes to the online case. All objects were succégsfuihe greedy algorithm covers on average significantly smalle
localized. As previously indicated, a demonstration of smeh distances for each executed hypothesis than the other two
test run is available in the supplementary documentation. scenarios, while localizing the targets as reliably as &gen
4 and significantly more reliably than Scenafignotice the
V. DiscuUssION explosion of U labelled test runs in Fig.8(e)). Furthermore,
From Figs.8(a),(b) we observe few differences betweave notice in Fig.6 that the greedy next-view-planner and
Scenarios 1 and 2 (recall that both scenarios use the gre#ty constant cost planner distances start to decreaselyough
next-view-planner). For example, the percentage of tess ruafter hypothesis 13. This is likely due to the greater cetyai
with a target rank of 1-2 and a target rankldfare almost the as to the location of the target —where the target is and
same. We should point out that from tBe: x 3m periphery is not located—, causing HR to cover smaller distances on
of Scenario 2, most objects’ projections on the image plaagerage. Notice that the random next-view-planner’s dista
are too small to be recognized by the intrinsic scales of oare constant and do not tend to decrease as the number of
feed-forward hierarchy, indicating that the greedy aldponi executed hypotheses increases. In Fig.7 we notice that the
is capable of compensating by moving sufficiently close areedy next-view-planner results in a significantly smate-
the targets. Recognition rates and the distances coveitdld uget map entropy after executing each hypothesis. A somewhat
the target is localized, also remain similar, indicatingttthe surprising result is that the greedy next-view-planner als
greedy next-view-planner is not sensitive to an increasedfs leads to a lower target map entropy than the constant cost
viewpoints on the same search space, and that the viewpoimxt-view-planner. Since the constant cost next-viewnmpést
of Scenario 1 suffice for good localization. ignores the movement costs and simply looks at the next
By comparing Scenarios 1, 2 with Scenario 3 (all thremost probable location of the object, one would think that
of which use the greedy next-view-planner), we reach soreenario4 (which uses a constant cost function) would result
conclusions as to how a more complex scene (Scenario 3 rasovering longer distances than Scendjdut with a faster
a significantly greater search space and a significantlyefarglecreasing entropy. However, as we see in Fig.7 this is mot th
candidate hypotheses list than the other two scenariosjtaff case. This seems to occur because the constant cost function
the performance of the localization algorithm. From Fign8 a executes on average hypotheses that cover greater distance
the relevant tables in the supplementary material sectfon (€ig.6). This results in a greater number of small patches
the journal, we notice only a small change in the mediasf never-viewed search regions, which retain their uniform
target rank and the average number of test runs that do pobr and which accumulate over time and lead to a greater
contain a maximal target imaged(, the test runs marked with overall entropy. Notice that the entropies in Fig.7 tend to
an unknown target rank’). As expected, there is a slightconverge to a non-zero horizontal asymptote. This is due to
degradation of the results’ quality in Scenafiodue to the big regions in our search space that are never viewed by HR,
increased search space size, but this performance dedseaspecifically regions under the table. This, however, doésmo
not sufficient to indicate that the algorithm does not scabmy way affect the next-view-planner’s decisions, as ovee t
well. From Table | we notice an interesting phenomenoan obstacle map is built around these regions and HR does not
While for Scenario3 there is a noticeable increase in thesum over those regions’ probabilities when choosing where t
number of executed hypotheses —compared to Scenariodobk next (see Eq.(2)). Overall, the results of Scenasios,
2— until the target is first localized, the increase in thaltot5 have justified the use of the greedy next-view-planner as an
distance covered until the target is first localized is ndtequ efficient approximation to the optimal next-view-plannust
as large. This implies that the average distance covered & the greedy approximation to the Knapsack problem offers
each executed hypothesis until the target is first localisedan efficient and often optimal solution to the problem [38), s
smaller in Scenari@. This likely occurs because the volumeloes the greedy next-view-planner offer an efficient sotuti
covered by the two shelves is quite close to the table’s velunto the problem that performs better than the baseline cases.
and the greedy algorithm tends to make smaller steps Byom Table | we see that the distance covered until the target
switching between searching the shelf space and the talsldfirst localized (i.e., all cases excluding < U) does not
space in order to decrease the total distance covered. Wd walepend on the target's recognition certainty (i.e., it does
expect the optimal solution to have a constant ratio for thileepend on which of the three casés-1,d <3, d < U we
number of executed hypotheses to the distance coveredsacare dealing with). If we include test runs when HR does not
Scenarios 1,2,3, if the shelves were far away from the tablecalize the targetd < U) we end up with greater values.
This shows that while the greedy next-view-planner is not We notice in Fig.8 that the distributions are bimodal, clus-
guaranteed to be optimal, its performance is far better thain tered around a rank of 1 and a rankdf We view this as an
of a typical baseline next-view-planner. We investigats th indication that the likelihood of localization due to chanie
more detail with Scenariod, 5 below. This shows that the trivial in our results, because if that were the case, we @oul
greedy next-view-planner does manage to constrain thé taapect to see a more uniform spread in the distributions. We
distance covered while maintaining an acceptable redognit notice in Fig8(f) that the proportion of/-ranked test runs is
performance. significantly lower than it is in any of the other five sub-figar
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This implies that by increasing the number of viewpointsifro next-view-planner described does not forbid more complex
which a scene is examined, and without applying any sortotions, such as squatting, from taking place. Executirofy su
of improvements to the single-view recognition algoritithe  motions is a matter of having appropriate inverse kinersatic
presented algorithm can significantly increase the truéipes libraries that can position the sensor in the desired state.
and true negative rates. Notice that this improvement accur

regardless of the next-view-planner used, as it is easiijiee VI. CONCLUSIONS

from Fig.8 or by comparing the target ranks and global ranks , . o
in the supplementary material section of the paper. Thisisho, We have shown that fast and reliable 3D object localization

that without striving for major improvements in single-wie ' feasible if we place some reasonable constraints on the
recognition, improvements to the next-view-planner caadle ProPlem. Such constraints include placing bounds on tre siz
to significantly better results. In other words, the impoc Of the search space, having controlled illumination coad,

of intelligent search algorithms should not be trivializetd having small dead-reckoning errors, and limiting the searc

the importance of avoiding degenerate viewpoints [26] ghou© objects that are well recogr!ized by _the feedforwarq hier-
not be underestimated either. While we have shown that GEhy- We have discussed the intractability of the locéitira

greedy next-view algorithm is superior in many ways to oth&oblem. We have shown that a greedy approximation to the
baseline algorithms, the next-view-planning problemrisir constrained active localization problem, that is basedhen t

opinion, far from optimally solved, as it is also argued ioj1 9réedy approximation to the Knapsack problem, can perform

The work described in this paper constitutes the first au:ti\péatter n terms of localization speed than random search and
visual search algorithm ever implemented on a humanasgarch that ignores the search movement costs. Furthermore
robot developed by Honda [35]. Compared to much of tHae grgedy_ next-wew-plan_ner_does not Ifaad to a decrease in
related work described in the introduction, our work is pyre € reliability of the localization. We briefly discussedeth
vision based and does not use other types of sensors sucf{i€-0ffs of localizing vs. detecting a target object. Véeds
range finders. This follows the premise around which Honde{lgese result§ as rnthahon to show th‘_"‘t even W'thO,Ut perfec
humanoid robot project [35] is structured, of building rtibo degd-reckonlng, it is possible to localize the position of a
systems that emulate human locomotion and the human visBgiect accurately enough to perform a number of tasks. Butur
system, both in terms of the hardware usedg( using a work may _mclude using HR to grasp the obJect_ once it has
visually guided humanoid robot) and the software architect been localized, using voice comman_ds to prowde feedback
used €.g.,using a hierarchical feedforward recognition systeff? HR and make the search more interactive, and to deal

inspired by human vision, and a next-view-planner thatehaVith dynamic environments changing over time. Future work

a number of behavioural properties with an ideal searcheffin @ls0 include an extensive analysis of the effects on the

thus, constituting one of the most advanced neuromorphifcSults of other parameters (camera resolution, deptfelf;
systems currently described in the literature for perfogni @nd search space dimensions for example) both qualitativel

visual search. In related work, such as [17], [18], norii-nd gquantitatively. Performing a cascade of experimentls wi

vision based SLAM techniques are often used for the m&ﬁenarios where the difficulty in localizing the object is

building and self-localization problem. Such techniques aProgdressively increased (through an increase in,th.e degree
typically superior than vision based algorithms are, eisigc of object occlusion, or an increase in _the objects’ simtiari ,
in poorly textured environments. In the presented work, t8" €xample), could provide more insights on the system’s
problem of self-localization is circumvented due to HR'®do IMitations and on ways to improve its performance.
dead-reckoning. However, vision-based SLAM techniques, o

landmark localization techniques, will have to be appliad i APPENDIX

future work to make HR capable of searching vastly largel aAddendum to Sec.ll-C

spaces. The presented optimization algorithm evaluates al

candidate hypotheses when deciding where to move/look next”00f of Theorem 1

Thus, as with all exhaustive search algorithms, it does not Proof: Notice that 3=, p(c}, An|vn, An—1, V-1, .-, A1,
easily fall in local minima. However, it does not scale aslwel1) = 3_; PAnlch, va)p(chAn—1, 001, ..., A1, v1). Thus

as gradient-descent-like optimization or linear-prograng- P An, Vs ooy A, 01) = Zp(ciI?nA_l.,vn_l,...,Alk,vl)p(&;lcivgn)
based approaches do. In contrast to POMDPs which use an fp((ccj‘lx"‘:1;””;1"“;1;}“1))”(& ”“lcij’vv’i))
infinite time horizon, our optimization algorithm uses a ondff P(ci|An, vn, ...; A, v1) = pz;fp(Z;,KHTURI,X;LII,LJ_ZJ,...",Affvln) -
step look-ahead, which suffices for certain vision tasksditfe But  this last equation holds iff p(ct|\,,vn,

not incorporate an error model in the disparity measurespent., A1, v1)p(An |[Vns A1, Un—1, ---s A1, 01) = p(ct A1,
since our use of Marked Candidate Cells around each detectgd, ..., A1, v1)p(An|ct,v,)  which in turn  holds iff
scene obstacle was proven sufficient in practice to hanéle th{\,|c!, vn, Ap—1,Vn—1, ..., A1,v1) = p(An|ck,v,), which
effects of small depth estimation errors on the target magislds by assumption. [ ]

updating. Furthermore, the lack of an error model speedsTheorem 2 Preliminaries

up our algorithm significantly, making real-time perforrsen Assume X(p ;; € [D,1], Yjp,py € [0,D) are unknown
easier to achieve. As we discovered in practice, achievisag nfunctions that depend of i, v, s, ¢, D € (0,1) and represent
real-time performance is a non-trivial task, and depends tre values of CM(q; iy, v, s,t) in image areas containing
many problem parameters, such as the search space size.thaetarget X(p 1)) or background Xy p)) respectively (see
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Fig.3(b)). Thus, for any sample functi®iM(-; i, v, s, t) that
is returned by random variabléM (v, s, t), its pixel § satisfies

CM(q_: Mo, U, S7t) =
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whereD € (0,1) is also an unknown function @f,,, v, s, t and
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