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Assessment of Single-channel Ego Noise Estimation Methods

Gökhan Ince, Kazuhiro Nakadai, Tobias Rodemann, Jun-ichi Imura, Keisuke Nakamura, and Hirofumi Nakajima

Abstract— While a robot is moving, ego noise is generated
due to the fans and motors of the robot. Furthermore, a
robot is not only subject to the ego noise, but also to the
ambient noise of the environment, both having different short-
term signal characteristics. Because ego-motion noise generated
by the motors is non-stationary, and the BackGround Noise
(BGN) is stationary, one single noise estimation method is
unable to track the changes in both noise spectra rapidly and
accurately. Therefore, we propose to use the combination of
two different noise estimation methods adequate for each one
of co-existing noise types in a unified framework: 1) a stationary
noise estimation method called Histogram-based Recursive
Level Estimation (HRLE) and 2) a non-stationary noise
estimation method called Template-based Estimation (TE). In
this paper, we evaluate the performance of several single-
channel based noise estimation techniques in terms of their
prediction accuracy and quality of the speech signals enhanced
by spectral subtraction methods. The experimental results show
that our system, compared to the conventional single-stage noise
estimation methods, achieves better performance in attaining
signal quality and improving word correct rates.

I. INTRODUCTION

In Automatic Speech Recognition (ASR) systems of
mobile robots, the performance degrades drastically in the
case of adverse environments with low Signal-to-Noise Ratio
(SNR) and the robot’s own noise, the “ego noise”, which
consists of the contributions of various noise sources, such
as stationary and diffuse fan/hardware noise and rather
non-stationary and directional motor (ego-motion) noise.
The signal quality and ASR accuracy can be improved by
applying a noise reduction algorithm to the degraded speech.

Conventional adaptive (i.e., Kalman) filtering techniques
are mostly not suitable for this noise because they are
computationally expensive, require either noise or speech
modeling, suffer from adaptation delays and divergence
can be harmful. Generally, microphone array-based multi-
channel noise reduction methods [1]-[4] demonstrate good
performance by attenuating the interfering sound sources,
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if the sound sources are directional. However, they cannot
cope with diffuse type of additive noise, such as static
robot/computer/air conditioner noise and partially non-
directional ego-motion noise (due to the effects like multi-
path propagation, dispersion, dissipation and diffusion inside
the covers of the robot). Alternatively and/or complementary
to multi-channel approaches, many single-channel speech
enhancement algorithms have been developed based on
Spectral Subtraction (SS), Wiener Filtering (WF) or
Minimum Mean Square Estimation (MMSE) [5]-[7]. All
these methods estimate the power spectrum of clean speech
using the power spectrum of noisy speech, where the noise
estimate plays a major role for the quality of the enhanced
signal [8]-[10]. Among these methods, Minima-Controlled
Recursive Average (MCRA) [9] is one of the most popular
noise estimation methods used in robot audition. It tracks
the minimum noise level in the spectrum of the noisy speech
and the noise spectrum estimate is obtained from the silent
segments of noisy speech using the Voice Activity Detection
(VAD) algorithms. The problem is that most VADs are based
on SNR levels and make the restricting assumption that
the noise is stationary (steady-state). However, a mobile
robot is intended to move to various places over time.
Therefore, even if the current environment changes, the
algorithms should achieve good performance without any
manual tuning, such as parameter optimization or learning
processes for the new environment. Nakajima et al. [10]
proposed a noise estimation method, called Histogram-based
Recursive Level Estimation (HRLE), which calculates a
time-continuous histogram of sound levels in real-time. It
shows better performance than MCRA in adapting to the
dynamical changes in the environment. Besides, it has the
advantage over MCRA that its parameters are tuning-free
and does not depend on the SNR-based thresholding.

A robot audition system requires a noise estimation
method that can also operate in the presence of non-
stationary noise, where the spectral characteristics of the
noise changes constantly such as observed in ego-motion
noise of a robot. Most of the noise estimation techniques fail
in this case, because they are neither able to discriminate
non-stationary noise from speech, nor fast enough to
track the rapidly changing noise in every frame. Several
researchers tackled this problem by using spectral templates
recorded in advance [11]-[13]. There are two types of
template structures that can be used in Template Estimation
(TE): Blockwise template and parameterized template.
Blockwise template represents the noise spectrum that arises
during a complete motion (e.g. trajectory of a single joint,



trajectory of multiple joints, a motion primitive, a gesture).
Using motion commands, the pre-recorded correct noise
template similar to the recent motion was selected from
a repository of motions and aligned in time according to
the current spectrum of the noisy speech. The drawback
of this approach is that it cannot cope with dynamic
changes of the motion trajectories in time and misalignment
is unavoidable [11]. Ito et al. [12] proposed a frame-
based parameterized template prediction technique using
an artificial neural network to cope with unstable walking
noise of a robot. The trained network had to predict noise
spectra for each frame from angular velocities of the joints
of the robot. Ince et al. [13] extended the idea further
by using a template database and Nearest Neighbour (NN)
search to extract the estimated templates from the database,
because approximate search strategies are more appropriate
to estimate the templates from a huge repertoire of robot
motions and make an online learning system easier [14].

The strengths of the template-based estimation method are
that it is not SNR-dependent, it is not prone to VAD errors
and adaptation latency is zero theoretically. However, the
template estimation method cannot perform adaptation to
the overall (ego and background) noise in an environment
with changing noise conditions. It can only reproduce the
templates that exist in the database, thus it reflects the
ambient noise conditions in the offline training session
only. To sum up, there are two major drawbacks: 1)
constantly growing database of templates, and 2) incapacity
of coping with changing environmental noise in real world.
Whereas the former problem can be dealt with an automated
incremental learning algorithm proposed in [14] and will not
be addressed here, tackling the latter drawback is the primary
target of this paper.

In this paper, we comparatively examine the capabilities
and performances of several noise estimation methods such
as MCRA, HRLE and TE under ego noise of a robot.
Since a speech enhancement system solely based on TE
cannot cope with the changing environmental noise or
an MCRA/HRLE-based noise reduction system is unable
to eliminate non-stationary noise, as our contribution, we
propose to concatenate the two stages to obtain a unified
preprocessing framework for a robot audition system. Our
main goals will be (1) to improve the results obtained with
objective performance criteria such as Normalized Noise
Estimation Error (NNEE), SNR and Log-Spectral Distortion
(LSD), and (2) to increase the robustness of other speech
processing applications to noise (e.g. ASR).

II. SINGLE-CHANNEL NOISE REDUCTION

Suppose an input signal y(t) of time sample t is given
such as:

y(t) = x(t)+n(t), (1)

where x(t) is a target signal and n(t) is a noise signal.
Noise estimation and reduction algorithms operate in the
time-frequency (spectrogram) domain. The complex input
spectrum Y (k, l) of frequency bin k and time frame l is

obtained from

Y (k, l) =
t=W−1

∑
t=0

y(t + lM)w(t)exp{ j(2π/W )tk}, (2)

where W is the window length, M is the shift length and w(t)
is the window function. The power input spectrum calculated
as |Y (k, l)|2 is used to estimate noise power spectrum λ (k, l)
(defined as λ (k, l) = |N̂(k, l)|2) from |Y (k, l)|2 in the noise
estimation process. A noise reduction process can be divided
into two consequent processes: gain calculation and spectral
filter. The gain calculation process calculates the optimum
gain G(k, l) that yields the estimated target spectrum as

X̂(k, l) = G(k, l)Y (k, l). (3)

The equation for computing G(k, l) is derived from the
reduction method, e.g., in case of SS [5]:

GSS(k, l) =

√
max

[
|Y (k, l)|2 −λ (k, l)

|Y (k, l)|2
,β
]
, (4)

where λ (k, l) shows the estimated noise spectrum, max
shows the maximum value calculation and β is the flooring
parameter. Since the noise reduction performance is strongly
affected by the quality of λ (k, l), the noise estimation method
is very important for noise reduction. Fig. 1 shows the
general configuration for single-channel noise reduction.
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Fig. 1. General configuration for single-channel noise reduction

A. Noise Estimation Methods

1) Minima-Controlled Recursive Average (MCRA):
MCRA [9] estimates the noise power as the averaged
power of noise periods detected by level-based VAD. First,
smoothed input power spectrum S(k, l) is calculated as:

S(k, l) = αsS(k, l −1)+(1−αs)S f (k, l), (5)

S f (k, l) =
w

∑
u=−w

b(u)|Y (k−u, l)|2, (6)

where αs, w and b(u) are smoothing parameters. With
S(k, l), MCRA calculates the minimum noise spectrum
Smin(k, l) using the Minimum Tracking method [8], where
Smin(k, l) is updated for every L frames. The voice activity
flag I(k, l), which equals 0 for noise periods and 1 for speech
periods, is decided as

I(k, l) =
{

1 S f (k, l)> ηSmin(k, l)
0 otherwise, (7)

where η is a threshold parameter. The final estimated noise
power λMCRA(k, l) is calculated as

λMCRA(k, l +1) = λMCRA(k, l)p(k, l)+ [αdλMCRA(k, l) (8)
+(1−αd)|Y (k, l)|2](1− p(k, l)),



where αd is a smoothing parameter and p(k, l) shows the
voice active probability. This p(k, l) is derived as

p(k, l) = αp p(k, l −1)+(1−αp)I(k, l), (9)

where αp is a smoothing parameter.
MCRA works well when the parameters are optimally

adjusted to the acoustic conditions. However, this adjustment
is especially difficult in non-stationary environments because
the optimum parameters also change accordingly.

2) Histogram-based Recursive Level Estimation (HRLE):
HRLE [10] estimates input noise levels as an “x” percentile
value Lx value from an input power level histogram. Since
HRLE uses recursive averages to obtain temporal histograms,
HRLE can adapt smoothly and quickly to the environmental
changes. The estimated noise spectrum λHRLE is obtained as:

YL(k, l) = 20log10 |Y (k, l)|, (10)

Iy(k, l) = b(YL(k, l)−Lmin)/Lstepc, (11)

N(k, l, i) = αN(k, l −1, i)+(1−α)δ (i− Iy(k, l)), (12)

S(k, l, i) =
i

∑
j=0

N(k, l, j), (13)

Ix(k, l) = argmin
I

[
S(k, l, Imax)

x
100

−S(k, l, I)
]
, (14)

λHRLE(k, l) = Lmin +Lstep · Ix(k, l). (15)

Lmin, Lstep and Imax are the minimum level, the level width
of one bin and the maximum index of the histogram,
respectively, x indicates the percentile position, α is the
time decay parameter calculated from time constant Tr and
sampling frequency Fs as α = 1 − 1/(TrFs) , δ (t) shows
the Dirac delta function and b·c is the flooring function.
Especially, x and α influence the estimated level and both
are SNR-independent. Furthermore, x value determines how
aggressively the noise is estimated. Higher x values are
appropriate for non-stationary noises, whereas HRLE with
lower x value can capture only stationary noise.

3) Template-based Estimation (TE): TE [13] is a noise
estimation method, which is well-suited to capture the
dynamic nature of the motion data represented by the
sequence of observations. Based on these observations,
we are able to associate a discrete time series data (i.e.
motion) with another discrete time series data (i.e. ego
noise) and predict an arbitrary sequence of associated
data. Specifically, this method utilizes encoders attached
to the motors of the robot, which measure the angular
position of each joint. During the motion of the robot,
actual position (θ(l)) information regarding each motor is
acquired regularly. Using the difference between consecutive
sensor outputs, velocities (θ̇(l)) and accelerations (θ̈(l)) are
calculated. Considering that J joints are active, 3J attributes
are generated. Each feature is normalized to [0 1] so that
all features have the same contribution on the prediction.
The resulting feature vector has the form of F(l) =
[θ1(l), θ̇1(l), θ̈1(l),θ2(l), θ̇2(l), θ̈2(l), . . . ,θJ(l), θ̇J(l), θ̈J(l)].
In the template generation (database creation) phase, one

feature vector is thereby assigned to the current noise
spectral vector |Y (l)|2 and used to label the instantaneous
noise fragment; this data block T (l) = [F(l) : |Y (l)|2] is
called a parameterized template. The goal is to create a
large noise template database for all desired motions.

During the prediction phase, a nearest neighbor search in
the database is conducted for the best matching template
of motor noise for the current time instance (frame at that
moment) using its feature vector label. The estimated noise
power, λT E(k, l), is used to compute the gains as in Eq. (4).
Due to the short distance between the motors and microphone
array, we assume that the reverberation time of ego noise
inside the robot is shorter than one frame (< 10ms) and thus
represented inside the current template. The motion effects
are also modeled in the templates.

B. Proposed Configuration for Ego Noise Reduction
Mobile robots are deployed to environments with (possibly

changing) background noise, ego noise and speech. Fig. 2
shows an example of a noise spectrogram that is recorded
in this kind of environment. Noise estimation methods
based on recursive averaging cannot adapt to the ego-motion
noise rapidly (see Fig. 3) because motions of different joint
combinations produce different noise spectra. On the other
hand, the frame-by-frame based estimation method, TE,
is fairly accurate in reconstructing any type of noise that
can be reproduced. Ego-motion noise falls into this noise
category because the duration and spectral power of the
motor noise signals do not change drastically for the same
type of motions (Fig. 4). The main drawback of this method
is that it cannot perform adaptation to ego-motion noise in
an environment with changing noise conditions. It can only
reproduce the templates that exist in the database, thus it
reflects the noise conditions in the training session only.
Considering that

N(k, l) = Ns(k, l)+Nn(k, l), (16)

where Ns(k, l) and Nn(k, l) denote the stationary and non-
stationary portions of the overall noise, we propose to use
the stationary and non-stationary noise estimation methods
in series as in Fig. 5 for the training of the template database.
As a consequence,a unified framework for noise estimation
consisting of two parallel and independent processes as in
Fig. 6 is created. While recursive averaging takes care of
Ns(k, l) the background and stationary portion of ego noise
(i.e. fan/hardware noise), TE with a template representation
of T (l) = [F(l) : |N̂n(l)|2] tackles the remaining non-
stationary noise portion of motor noise Nn(k, l).
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Fig. 2. Noisy spectrogram
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Fig. 3. Estimated noise spectrogram by HRLE with a rather short time
constant Tr = 1sec.
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Fig. 4. Estimated noise spectrogram by TE

III. EVALUATION

In this section, we first assess the estimation and
suppression capabilities of MCRA, HRLE, TE by
individually applying them to the noise signals consisting
of ego noise and environmental background noise. Then the
performance of proposed method with different combinations
(i.e., HRLE+TE, MCRA+TE) as explained in Sec. II-B is
evaluated. We also test the performance of stationary noise
reduction after applying TE-based SS to obtain comparative
results. Using a humanoid robot developed by Honda, one
set of noise and joint status data (200 seconds long) for
training, and three sets of similar data (100 seconds long)
for testing are collected during a continuous head motion
of 2 Degree of Freedoms (DoF) and arm motion of 4 DoF
(see Fig. 7). The recording environment is a room with
the dimensions of 4.0 m×7.0 m×3.0 m with a reverberation
time (RT20) of 0.2 sec. The performance of all methods are
compared under 4 different SNR conditions for the same
signal segments as in Fig. 2. Condition (1)-(2): Noise energy
is fixed, speech signals are amplified to yield SNR(1) = 3dB
and SNR(2) = −3dB; Condition (3)-(4): Gaussian white
noise is added to (2) to represent changing conditions of
static BGN with SNR(3) = −3.1dB and SNR(4) = −3.2dB.
The parameters of the HRLE and MCRA are selected
appropriately for non-stationary noise estimation [9],[10]
and are given in Tab. I. A minor spectral floor β = 0.1 is
used in the SS stage.

TABLE I
PARAMETER SETTINGS FOR MCRA AND HRLE

MCRA HRLE
αd = 0.95, αp = 0.2 Lmin =−200dB, wo. TE: / w. TE:
αs = 0.8, L = 125 Lstep = 0.2dB, x = 50%/20%
w = 1, λMCRA = 5 Imax = 2000, Tr = 1sec/10sec

Template
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N(k, l) Stationary
noise 
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^

F(l)

T(l)
Template
Database

Power
extraction

|Nn(k, l)|
2^

Fig. 5. Template database generation in the offline training session
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Fig. 6. Unified noise estimation framework

A. Evaluation Criteria

1) Normalized Noise Estimation Error (NNEE): NNEE
computes the error of the noise estimate normalized by the
energy of the actual noise using the following formula:

ε̄ =
1
L ∑

l=1
10 · log10

(
∑M

k=0 ||N(k, l)|2 −|N̂(k, l)|2|)
∑M

k=0 ||N(k, l)|2|

)
, (17)

where L is the number of frames.
2) Segmental SNR: The average of the SNR values is

calculated for segments of audio data such as:

SNR =
1
L

L

∑
l=1

10 · log10

(
∑t x2(t)

∑t (x(t)− x̂(t))2

)
. (18)

3) Log-Spectral Distortion [6]: This evaluation measure
computes the reconstruction error of the clean speech by
comparing the enhanced speech signal X̂(k, l) with the
original speech X(k, l) in the log domain as follows:

LSD =
1
L

L

∑
l=1

(
1
K

K

∑
k=1

[
L X(k, l)−L X̂(k, l)

]2)1/2

, (19)

where L X(k, l) , max{20log10|X(k, l)|,δ} is the log
spectrum confined to about 50 dB dynamic range, hence
δ = max

k,l
{20log10|X(k, l)|}−50.

4) Ideal Estimation: In order to evaluate the accuracy of
the noise spectrum estimation, ideal gain Gi(k, l) is computed
from the the original noise spectrum in the training session
and used in Eq. (3). Note that Gi(k, l) is still subject to
negligible errors caused by approximation strategy of the
fast NN search1.

5) Automatic Speech Recognition: The noise signals are
mixed with clean speech utterances used in a typical human-
robot interaction dialog and recorded by us. This Japanese
word dataset includes 236 words for 4 female and 4 male
speakers. We used a clean acoustic model trained with
Japanese Newspaper Article Sentences (JNAS) corpus, 60-
hour of speech data spoken by 306 male and female speakers,
hence the speech recognition is a word and speaker-open test.
We used 13 static Mel-Scale Log Spectrum (MSLS) features,
13 delta MSLS features and 1 delta power feature. Speech
recognition results are given as average Word Correct Rates
(WCR) of instances from the noisy test set.

1http://www.cs.umd.edu/˜mount/ANN/



Microphone

Motor

Hardware noise

Motor (ego-mo�on) 

noise

0.2 m

0.25 m

0.2 m 0.5 m

Robot height: 1.2 m

Fig. 7. Experimental setup

B. Results

The estimation performance of all methods are given in
Tab. II. In all conditions of stationary noise, TE performed
worse than other methods because this method is not suitable
for estimating the stationary noise. It yields the lowest
estimation error for (1) and (2) in the presence of non-
stationary noise because the test data was recorded in the
same room. However, unfamiliar BGN conditions such as
in (3) and (4) degrade the accuracy of the TE because the
portion of the stationary noise becomes more dominant in
the overall noise energy compared to the portion of the ego
noise. Furthermore, HRLE outperforms MCRA especially in
the presence of ego noise.

TABLE II
NOISE ESTIMATION PERFORMANCE FOR ALL METHODS

SNR ε̄ for given segment HRLE MCRA TE
(1) Stationary noise -5.81 -6.26 -5.08
3dB St. + Non-st. noise -4.61 -4.38 -4.89

Total noise + Speech -4.92 -4.68 -5.06
(2) Stationary noise -5.81 -6.26 -5.08
-3dB St. + Non-st. noise -4.61 -4.38 -4.89

Total noise + Speech -4.84 -4.63 -5.06
(3) Stationary noise -7.96 -7.12 -4.95
-3.1dB St. + Non-st. noise -6.3 -5.75 -4.95

Total noise + Speech -6.71 -5.63 -5.11
(4) Stationary noise -8.87 -8.03 -4.52
-3.2dB St. + Non-st. noise -7.1 -6.64 -4.76

Total noise + Speech -7.42 -6.45 -4.92

We evaluate the noise reduction performance by using
the system depicted in Fig. 1. This time, we also use
the combinations of several estimators in series (labeled
as method A + method B, e.g. HRLE+TE) for database
generation and compare their results to the baseline results
(i.e., No Processing, NP). In this case, we use the the
settings in Tab. I indicated with “w. TE” because they are
more appropriate for stationary noise estimation. As Tab. III
demonstrates, TE achieves the smallest LSD and largest
WCRs among all methods in the conditions (1) and (2). A
substantial improvement of 30.4 points in WCR is achieved
especially for −3dB. In terms of SNR, only HRLE+TE can
outperform TE. In general, HRLE creates less distortion
in speech (LSD), thus, achieves higher recognition rates
(WCR) compared to MCRA. We also observe that using the
stationary noise estimation techniques rather as a secondary
step after TE, such as, TE+HRLE or TE+MCRA, does not
improve the quality of the refined speech any better than
when they are used as a primary step.

Tab. IV provides not only ideal results like, SNR, LSD
or WCR, but also normalized noise spectrum errors for
stationary noise, st. noise+non-st. noise, total noise + speech,
resp. ε̄P1, ε̄P2, ε̄P3. The performance reduction for the
combined methods is due to errors in the nonlinear noise
reduction operation prior to database generation (see Fig. 5).
By making just a small compromise in the accuracies as
shown in Tab. II and IV, the framework of HRLE+TE will
later provide adaptivity to the system and achieve even better
results in changing background noise.

TABLE III
EGO NOISE REDUCTION PERFORMANCE FOR ALL METHODS

Estimation SNR(1) = 3dB SNR(2) =−3dB
Method SNR LSD WCR SNR LSD WCR
NP 3.00 9.7 78 -3.0 11.2 28.3
MCRA 3.90 9.49 83.2 -1.38 10.8 44.5
HRLE 3.96 8.94 84.1 -1.2 10.2 47.2
TE 5.49 8.51 87.4 2.05 8.73 58.7
MCRA+TE 5.85 8.61 79.7 1.85 8.95 51.6
HRLE+TE 6.02 8.66 86.2 2.74 8.88 54.8
TE+MCRA 5.28 8.74 84.5 1.44 9.48 53.9
TE+HRLE 5.22 8.91 85.6 1.41 9.3 55.6

TABLE IV
IDEAL NOISE ESTIMATION AND REDUCTION PERFORMANCE FOR

SNR(2) =−3dB

Method SNR LSD WCR ε̄P1 ε̄P2 ε̄P3

TE 2.67 7.32 92.6 -12.1 -86.5 -88.0
HRLE+TE 3.84 7.43 92.3 -5.80 -9.22 -8.36
TE+HRLE 2.56 8.19 89.4 -6.06 -12.42 -12.54
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Fig. 8. Refined spectrogram by TE-based SS (SNR = 3dB)
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Fig. 9. Refined spectrogram by “HRLE+TE”-based SS (SNR = 3dB)

By inspecting the spectrograms of the refined signal,
X̂(k, l), in Fig. 8 and Fig. 9, we see clearly that TE has
difficulty in estimating the stationary noise segment because
it relies only on one single template representing the fixed
stationary position of the robot. In addition, it creates sharp
vertical valleys and peaks in the spectrum, which are caused



TABLE V
EGO NOISE REDUCTION PERFORMANCE FOR ALL METHODS

Estimation SNR(3) =−3.1dB SNR(4) =−3.2dB
Method SNR LSD WCR SNR LSD WCR
NP -3.1 12.6 25.5 -3.2 14 22.8
MCRA -1.31 11.2 36.8 -1.23 11.9 34.8
HRLE -0.75 10.0 42.1 -0.76 9.93 38.2
TE 1.97 9.75 51.7 1.77 11.1 44.5
MCRA+TE 1.93 9.75 40.8 1.89 9.73 17.7
HRLE+TE 2.63 9.03 52.0 2.77 9.24 46.5
TE+MCRA 1.44 10.3 50.3 1.44 11 44.1
TE+HRLE 1.52 9.74 47.1 1.53 10.1 42.2

by the smaller attenuations of the frequencies compared to
relatively larger attenuations of their neighboring frequencies
due to the incorrect estimations or missing templates in
the database. This so-called musical noise effect is reduced
by the HRLE+TE, because HRLE attenuates the spectrum
more smoothly and the characteristics of the residual noise
resembles less harmful salt-and-pepper noise.

Tab. V shows the results for the simulation of changing
ambient noise. We observe that the higher the contribution
of the background noise, the more effective MCRA and
HRLE methods are. Under conditions (3) and (4), especially
HRLE contributes more to cancelling the overall noise by
eliminating the background noise. Hence in its combination
with TE, TE deals only with the non-stationary part of
the overall noise regarding the ego-motion noise. This
kind of configuration improves the robustness of the noise
suppression system against changes in the environmental
noise conditions. Besides ASR, the high SNR and low
LSD results indicate that the estimates can also be used
accurately for other speech applications. Fig. 10 shows the
resulting spectrogram when TE-based SS is applied for the
noise condition (4). As expected, TE cannot cope with the
remaining background noise in all frequency bands. On the
other hand, the proposed HRLE+TE based SS method can
suppress the noise effectively as shown in Fig. 11. The
similarity between Fig. 11 and Fig. 9 justifies the importance
of the proposed configuration in a typical audition system of
a mobile robot and that it achieves a similar suppression
performance even if the environment changes.
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Fig. 10. Refined spectrogram by TE based SS (SNR = 3.2dB)

IV. SUMMARY AND OUTLOOK

In this paper we assessed the performance of several
single-channel noise reduction methods in the presence of
background noise and ego noise, and presented a method
exhibiting high robustness even against changing conditions

Time [s]

F
re

q
u

e
n

cy
 [

k
H

z]

 

 

0 2 4 6
0

2

4

6

8

50

60

70

80

90

100

Fig. 11. Refined spectrogram by HRLE+TE based SS (SNR = 3.2dB)

of the environment. The system we proposed combined
a stationary noise estimation (HRLE) and non-stationary
noise estimation (TE) in a single framework. We showed
that our integration method achieves precise estimation of
overall noise and a high ASR accuracy under various SNR
conditions. Another contribution of this paper was that it
provides the underlying basis and configuration of further
research advancement in incremenal learning of ego-motion
noise templates [14]. In future work, we plan to predict
missing motion and noise data by extrapolating the identified
patterns, and add them into the database in an online manner.
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