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Behavior prediction at multiple time-scales in inner-city scenarios

Michaël Garcia Ortiz, Jannik Fritsch, Franz Kummert and Alexander Gepperth

Abstract— We present a flexible and scalable architecture
that can learn to predict the future behavior of a vehicle in
inner-city traffic. While behavior prediction studies have mainly
been focusing on lane change events on highways, we apply
our approach to a simple inner-city scenario: approaching a
traffic light. Our system employs dynamic information about
the current ego-vehicle state as well as static information about
the scene, in this case position and state of nearby traffic lights.

Our approach differs from previous work in several aspects.
First of all, we hold that predicting the precise sequence of
physical and actuator states of a car driving in dynamic inner-
city traffic is both challenging and unnecessary. We therefore
represent predicted behavior as a sequence of few elementary
states, termed behavior primitives. As a second aspect, behavior
prediction is treated as a multi-class learning problem since
there are multiple behavior primitives. Rather than disturbing
the system, we show that this can be exploited for comput-
ing information-theoretic measures of prediction confidence,
thereby allowing to identify and reject unreliable predictions.

We show that the horizon of predictions can be extended
up to 6s, and that uncertain predictions can be detected and
eliminated efficiently. We consider this a significant result since
typical prediction horizons are usually in the range of 1 to 2s.

The main message of this paper is that simple learning
methods can achieve excellent prediction quality at long time
horizons by operating purely on the “system-level”, i.e., using
an abstract, low-dimensional situation representation. Since the

learning approach greatly reduces the design effort, and since
we show that the prediction of multiple behavior classes is
feasible, we expect our architecture to be scalable to more
complex scenarios in inner-city traffic.

I. INTRODUCTION

As the performance of computing hardware systems in-

creases, intelligent vehicles are more and more able to

construct reliable situation representations even in complex

scenarios. Such representations can include location and

dynamic state of traffic participants, as well as information

about specific objects (like, e.g., traffic signs) or events

(traffic light turning red). Since such systems are now capable

of real-time performance, complex architectures can be build

upon these detection systems, notably Advanced Driving

Assistant Systems (ADAS) such as lane keeping [1] or

Adaptive Cruise Control [2]. The aims range from improving

safety to reducing energy consumption by assisting the driver

or controlling the vehicle. In this contribution, we present

M. Garcia Ortiz is with the CoR-Lab, Universität
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a system able to predict possible future driver behaviors

depending on the current situation representation.

Predicting driver behavior is an attractive concept: such

predictions can be used to warn the driver in case of

deviations from expected behavior, or to inform sensory

processing which can thus focus on situation properties that

are relevant for future driver actions. Since our focus is on

inner-city traffic, we use learning techniques to ensure that

our system can easily scale to a high number of situations

and possible driver actions. In this study, we focus on the

simple scenario “approaching a traffic light” in order to give

a proof-of-concept of the learning and evaluation methods.

We concentrated our recent work on system-level learn-

ing in (semi-)autonomous agents [3]: this kind of learning

operates on low-dimensional, invariant and near-symbolic

quantities obtained from dedicated processing subsystems. In

this contribution, we build on this concept, trying to predict

low-dimensional representations of driver behavior from low-

dimensional representations of the environment. In doing

this, we argue that a prediction of precise, physical behavior

and actuator states is neither very easy nor, indeed, required

for driver assistance.

II. RELATED WORK

Recent developments in the area of ADAS show that more

and more approaches go in the direction of using learning

techniques ([4], [5] and [6]). One reason for this is the

achieved reduction of design effort, especially when scaling

systems to inherently complex scenarios such as inner-city

traffic. The price to pay for this is an increase in initial

design effort for setting of learning methods and collecting

training data. In the context of driver behavior prediction,

there exist several systems circumventing the learning issue

by using hand-designed mathematical models and heuristics

to estimate the trajectory of the ego-vehicle ([7], [8] and

[9]). We believe that learning approaches must be used at

some point because the number of situations or behaviors in

complex environments will become too large for designed

systems. It is our conviction that learning will cope with the

complexity of the task, and also greatly reduce the overall

design effort. There are numerous possible strategies for

learning relationships between a set of features extracted

from sensory processing and the behavior of the driver.

In [10], a method based on visual features is presented,

computing a gist descriptor of the whole image used to

predict the binary state of three actuators (accelerator, brake,

and clutch pedals). In [11], a Conditional Random Field

(CRF) is used to decompose the visual scene into its con-

stituent elements (such as the road, sidewalks or other cars)
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and compute the coarse spatial layout of the different scene

elements, their horizontal and vertical distribution in the

image, and edge orientation histograms of the lane markings

and curbs. The approach uses these features to learn a fine-

grained prediction of the actuator states, as well as the

appropriate velocity. Both works show the feasibility of the

approach on real data. Our work differs by the fact that we

use low-dimensional representations of current situation and

predicted behavior, and by the fact that we predict the future

behavior (as opposed to instantaneous behavior) of the driver.

Instead of deriving pixel-level features, object-level fea-

tures are used in [12]. The system is tested on a simulated

car-following scenario, using distance and relative velocity

to the preceding car to predict free-ride, following, sheer-

out and overtake behaviors (and their associated trajecto-

ries). Symbolic (behaviors) and sub-symbolic (trajectories)

representations are combined in order to predict future po-

sitions of the traffic participants. This approach has a lot in

common with the one we propose, but the authors predict

the trajectory and positions of the car, whereas we aim at

predicting low-dimensional behavior primitives. Moreover,

the approach is evaluated on simulated data, whereas we are

using real data.

Similar to our approach, a segmentation of the complex

behavior into a sequence of basic elements is presented

in [5]. The information about the car dynamics (speed

or steering angle from CAN-bus and GPS data) is used

in order to classify the current maneuver. However, the

classification of the observed maneuver is performed without

any knowledge about the traffic scene, whereas we aim to

predict the future behavior primitives including static and

dynamic scene properties as well.

In [13], a sparse Bayesian learning (SBL) method is

applied to derive an estimate of driver intent, which amounts

to predicting the probability of an imminent lane change. In

contrast to our approach, inputs to the learning algorithms

are high-dimensional since present and past positions and

speeds of the ego-vehicle are included. To remedy this, the

authors use the SBL method which is expected to select a

subset of relevant features from its high-dimensional input.

Furthermore, an explicit measure of driver state is taken into

account which is not done in the present study. Results show

that lane changes on highways can be predicted at least

2.5s in advance with good accuracy. A similar approach is

presented in [14], concerning the braking behavior prediction

in a car-following scenario. The authors predict the need

for braking depending on the scene observation as well as

the intention of braking depending on the observation of the

driver. They can then estimate the probability of a crucial

situation, in order to derive a warning signal.

Of course, segmenting the behavior space is not the only

solution to tackle the complex behavior prediction. Instead

of focusing on the behavior space, the decomposition of

the traffic situations into analyzable subsets called Situation

Aspects is presented in [15]. The observation of the traffic

scene with a Scenario Based Random Forest algorithm is

used to classify the situation. Our work differs in the sense

that these authors focus on segmenting the situation whereas

we segment the behavior space. Finally, the classification

and evaluation methods used for behavior prediction are not

presented, whereas they are the main objective of this study.

III. METHODS

We predict the future behavior primitives ahead in time, on

different time scales, depending on the current ego-vehicle

status and scene properties.

A. Segmentation into behavior primitives

As explained previously, we consider that raw actuator

states or even trajectories of the ego-vehicle are not easily

predictable. They depend on multiple factors that are not

always determinable (like, e.g., the characteristics of the

car or the stress level of the driver). Two different drivers

performing the same behavior can have different trajectories.

As an example, two drivers approaching a red traffic light

will both brake, but their exact trajectories will differ. There-

fore, we describe the driver behavior using a set of standard

elementary behaviors, that we call behavior primitives.

The decomposition of the stream in a sequence of behavior

primitives is done using heuristics, segmenting portions of

trajectories over time with data coming from the CAN-bus.

Since this contribution focuses on the braking behavior on

straight roads, the heuristics only use speed, gas pedal and

break pedal information, and we limit the behavior primitives

to the longitudinal dimension: “braking”, “stopped” and

“other”. We first detect the parts of the streams where the

driver has the behavior “stopped”: when the speed is below

2km/h. We extract each “braking” behavior leading to a

“stopped” behavior. We define the beginning of the “braking”

behavior as the moment when the driver stops accelerating

(then the acceleration pedal is not used). Indeed, in inner-city

traffic, the car starts slowing down as soon as the driver is not

using the gas pedal. The end of the “braking” behavior is of

course the beginning of the “stopped” behavior. The samples

that are not labeled as “braking” behavior or “stopped”

behavior are then labeled as “keep speed” behavior. One can

refer to Fig. 1 for an illustration of the behavior segmenta-

tion.

Fig. 1. Example of a traffic light approach scene: evolution of the
activations depending on the time.
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B. Encoding of the situation and behavior representations

For the simple scenario considered in this study, input data

to the behavior prediction are restricted to ego-vehicle speed

as well as the status and the distance of nearby traffic lights.

We compute the behavior primitive for each sample of

this dataset in an offline fashion according to the procedure

described in Sec. III-A. It is encoded as a 3-element binary

array, one element for each possible behavior primitive.

As we have not yet implemented robust algorithms for

detecting traffic lights, we manually annotated the presence

and the status (green, yellow, or red) of traffic lights based

on the image data. In order to estimate the distance to the

traffic light, we extract the moment when the ego-vehicle

crosses the traffic light. We then calculate previous distances

to the traffic light by integrating the speed of the ego-vehicle,

obtained from the CAN bus. We compute the distance to

the traffic light and the status of the traffic light for each

sample of the dataset. The distance is encoded in a single real

number, whereas the status of the traffic light is encoded into

a 3-dimensional binary array, each element corresponding to

one possible status of the traffic light (green, yellow, red).

The distance and status of the traffic light, together with

the speed of the ego-vehicle, form a 5-dimensional input

vector for each sample in the dataset. The 3-element behavior

primitive associated with each sample corresponds to the

learning target.

C. Learning and Prediction strategy

The behavior prediction system performs a mapping be-

tween the situation representation (see Sec. III-B) at time t,

and the future behavior primitive, predicted on several time

scales for times t+T1, t+T2, . . . , t+Tn. Our mid-term goal

is to perform learning and prediction in a running system.

This would imply that we train a learning algorithm, for a

given time t and a time scale Tk, to represent the relationship

between the situation at t − Tk and the behavior primitive

at t since we cannot look into the future. After convergence,

trained algorithm is used to predict the behavior primitive at

time t+Tk using the situation representation at time t. This

process is illustrated in Fig. 2.

For our current evaluation, we perform the learning and the

prediction in an offline fashion where data are stored prior

to training and evaluation. As “looking into the future” is

thus possible, the learning and prediction steps are simplified

while the performance of the learning is not affected.

D. Multilayer Perceptron for Behavior Prediction

In order to learn the mapping between the current situation

representation and the future behavior primitives, we use a

multi-layer perceptron (MLP). The MLP model [16] is a

standard nonparametric regression method using gradient-

based learning. It is a rather simple neural model, the only

free parameters being the number and size of hidden layers.

The hidden layer may be viewed as an abstract internal

representation where it is however unclear what is being

represented. For network training, we employ the back-

propagation algorithm with weight-decay and a momentum

Fig. 2. Visualization of the learning paradigm: The learning mechanism
maps the past situation representation (at time t − Tk) and the present
behavior primitive (at time t). Then it predicts the the future behavior
primitive (at time t + Tk) using the present situation representation (at
time t).

term (see, e.g., [17]). We configure the MLP to produce

three real-valued outputs Astopped, Abraking and Aother cor-

responding to the predicted behavior primitives. In order to

compensate the different frequencies of the three behaviors,

we normalize these activations over time to have the same

mean and same variance for the evaluation of the quality

of the prediction. As we are using offline learning and

prediction on recorded data, this operation does not violate

causality. In an online learning scenario, normalization would

have to be performed using a fixed time window.

We used the pyBrain-library [18] for all described MLP

experiments. The MLP training algorithm depends on the

learning rate parameter ǫMLP and the momentum parameter

νMLP. The choice of the learning technique is based on

a study of different learning techniques in [3]. MLP is a

generic and simple method, which can scale to a wide range

of problems, and can be adapted for online learning.

E. Prediction confidence assessment

As detailed in Sec. III-D, the result of behavior prediction

are three normalized activations of neurons Ai. In order to

prevent the use of unreliable predictions, we derive an esti-

mate of the confidence of this prediction Cconf by measuring

its variance:

Cconf = var(Ai) (1)

Theoretically, the entropy would be a more attractive measure

which is however inapplicable here because
∑

i Ai = 1 does

not hold in general. We can now set a confidence threshold

τ conf and determine whether the prediction is reliable or not:

if Cconf > τ conf: the prediction is confident

else : the prediction is not confident

The variance of the {Ai} is highest when there is a single

dominant Ai∗ , which means that the result of the classifi-

cation is reliable. In contrast, variance is lowest when all
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activations are similar; as behavior primitives usually are

mutually exclusive, this signals high prediction uncertainty.

This measurement of prediction confidence is a very

important step, especially (as we plan to do in the future)

when concurrently predicting a large number of behavior

primitives. We consider that recognizing uncertain predic-

tions and taking no decisions is preferable to taking wrong

decisions.

F. Decision making and error measures

The classification value for any output neuron i is obtained

by computing Cclass
i = Ai−

∑
j 6=i Aj . When focusing on the

braking behavior, as we do in this study, this becomes:

Cclass
braking = Abraking −Astopped −Aother (2)

We can set a classification threshold τ class, and make a

classification decision for each prediction which of course

also depends on the prediction confidence measure Cconf

described in Sec. III-E:

if Cclass
i > τclass and Cconf > τ conf :

behavior primitive is predicted

if Cclass
i ≤ τclass and Cconf > τ conf :

absence of behavior primitive is predicted

if Cconf ≤ τ conf :

unreliable prediction is rejected

(3)

For each value pair of the thresholds τ class, τ conf and for each

output neuron i, we compute the detection rate νcorrect
i , the

false positive rate ν incorrect
i and the rejection rate ν

reject
i which

are defined as

νcorrect
i =

#(reliable correct classifications)

#(reliable positive examples)

ν incorrect
i =

#(reliable incorrect classifications)

#(reliable negative examples)

ν
reject
i =

#(rejected examples)

#(all examples)

By varying the classification threshold τ class, a receiver-

operator-characteristic (ROC) can be generated. This perfor-

mance measure is a standard tool in machine learning and has

been previously used to evaluate behavior prediction systems

(see [13]). In the presented ROCs, we plot the detection

rate against the false positive rate; as the rejection rate is a

function of τ conf which is not varied, we display the rejection

rate along with each plotted ROC. Omitting this information

could be misleading since a ROC may be of very high quality

while accounting only for a small part of test examples, i.e.

those who were not rejected.

G. Evaluation procedure

We employ N-fold cross-validation to assess prediction

results, splitting the dataset into N subsets, each containing

an equal amount of successive samples. We train the system

using N-1 subsets and we present the samples from the

remaining subset to the trained prediction system. We obtain

a sequence of activations for the three output neurons which

we normalize according to Sec. III-D.

We then use the activations from the N evaluation subsets,

obtained from the N possible combinations of training and

evaluation subsets, in order to evaluate the quality of the

prediction over the whole dataset.

IV. EXPERIMENTAL SETUP

We used a dataset containing approximately 16000 sam-

ples of traffic light approach scenes (see Fig. 3), extracted

from video streams recorded in inner-city environment. As

the videos are recorded at 20Hz, this correspond to 13

minutes of driving in inner-city. We splitted this dataset in

16 subsets, to evaluate our system as described in III-G.

Fig. 3. Example of inner-city traffic light approach scene.

In order to learn the prediction from the situation repre-

sentation at time t and the behavior primitive at time t+Tk,

we train our system using as input the input learning vector

at time t and the corresponding output target at time t+Tk.

Our MLP has a linear input layer of size 5, one hidden

layer of size 100 and 3 output neurons, applying a sigmoid

non-linearity for hidden layer and output neurons and a bias

neuron for the hidden layer and the output layer. Standard

training of the MLP requires 4 rounds (gradient steps) before

early-stopping [17] occurs (one round is one iteration over

the whole dataset). We work with ǫMLP = 0.01.

Once trained using 15 subsets, we present the samples

from the remaining subset to the MLP. We obtain a sequence

of activations for the three output neurons which we normal-

ize according to Sec. III-D.

V. EXPERIMENTS AND RESULTS

In this study, we focus on evaluating the possibilities

of learning methods for behavior prediction, and especially

on learning in the presence of multiple timescales and

behavior classes. We will first analyze the effect of our

novel prediction confidence measure on prediction accuracy

by evaluating instantaneous prediction of braking behavior

(i.e., we “predict” the present). We then go on to present the

results of braking behavior prediction at several time scales

ranging from 0.5s to 6s, again demonstrating the value of

prediction confidence estimation as described in Sec. III-E.

One can see on Fig 4 the activation of the MLP over time,

for 4s prediction, while approaching a red traffic-light.
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Fig. 4. Activations of the MLP over time, for a prediction 4s ahead of
time, in a red traffic-light approach scene.

A. Effects of the rejection of non-confident predictions

For this experiment, we train our system to learn the

mapping between the current situation representation and

the current behavior primitive. This serves to demonstrate

the importance of the confidence threshold τ conf which is

set to different constant values while ROCs are obtained by

varying τ class. In this way, a number of ROCs at different

rejection rates is obtained which can be viewed in Fig 5. It

is apparent that, up to a point, the removal of less confident

predictions increases overall prediction quality. Beyond this

point, if we set the confidence threshold too high, the overall

quality of the prediction will decrease again. Therefore,

an optimal value has to be determined in order to reach

good performance while avoiding the rejection of too many

predictions. Another way of visualizing this effect is used
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Fig. 5. Instantaneous prediction of current behavior. Shown are ROCs
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class. For each ROC, a
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conf is applied.

in Fig. 6, where we analyze in more detail the influence

of τ conf on the quality of the prediction. Here, we plot the

false positive rate against the amount of samples discarded

by the confidence evaluation, where the value of τ class has

been always chosen such that the detection rate is at 85 %.

As one can observe from Fig. 6, there is a clear optimal

setting for the confidence threshold. We therefore decide for

future experiments to set τ conf such as to remove 10% of

samples corresponding to the least reliable predictions.
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Fig. 6. Instantaneous prediction of current behavior. Shown is the false
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due to the variation of the confidence threshold τ

conf. The value of τ class is
fixed to produce (for each distinct value of τ

conf) a detection rate of 85%.

B. Prediction of future behavior at multiple time scales

We now compare the prediction of the future braking

behavior at different time scales. We set the confidence

threshold τ conf as determined in the previous experiment,

discarding 10% of samples. As can be observed in Fig. 7, it

is possible to predict the future behavior primitive for the

different time scales presented. Of course, the quality of

the prediction decreases when the timescale of prediction

increases. As expected, the quality of braking behavior
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Fig. 7. Behavior prediction at several timescales using a fixed confidence
threshold. As can be seen, the system is able to perform behavior prediction
up to 6s into the future.

prediction is best at T0 = 0s and decreases continuously

with increasing prediction horizon. This is an additional

cross-check for the validity of the approach, since it stands

to reason that larger prediction horizons leads to higher

uncertainty. We also verified that the quality of the prediction

decreases strongly to reach roughly chance level at 10s.

VI. DISCUSSION

In this contribution, we showed that is it possible for a

system to learn the prediction of present and future behavior

primitives at multiple timescales. We also showed that a

simple learning algorithm operating on low-dimensional rep-

resentations of situation and behavior is sufficient to predict

1070



braking behavior with very good accuracy at time scales up

to 3s. As expected, the quality of the prediction decreases

with the timescales, and becomes almost meaningless for

timescales larger than 6s. We also presented a measure of the

prediction confidence in case of multiple behavior classes,

allowing to disregard uncertain predictions. We showed that

it is possible to increase the quality of the prediction by using

a moderate threshold on prediction uncertainty, thus disre-

garding approximately 10% of predictions. The evaluation

of prediction confidence is a key element toward building a

large-scale behavior prediction system with a higher number

of behavior primitives as it may be expected in complex

inner-city traffic.

It could certainly be argued that the learning problem

considered here is too simplistic as it has only 5 input

and 3 output dimensions. It is certainly true that we are

considering a restricted scenario for learning. However, it is

precisely our point that it may not be necessary to consider

very complex or very high-dimensional learning problems for

successful behavior prediction: for most ADAS applications

(such as warning the driver in case of unusual maneuvers),

a really precise and therefore high-dimensional prediction

of behavior is not required. On the other hand, the success

of the presented study is consistent with our previous work

on real-world vehicle detection where we could show that

object recognition can profit strongly from learning on low-

dimensional invariant representations as well.

Another objection to our approach is that the neural net-

work might actually just predict based on current and recent

ego-velocity values, i.e., perform a very simple physical

prediction. This can however not be the case since past

vehicle states are, for this very reason, not supplied to the

neural network. In addition, the distance and state of the

traffic light are quantities which make prediction of future

behavior primitives a non-trivial and non-physical task.

VII. FUTURE WORKS

We first intend to compare the presented prediction system

to a physical trajectory prediction system to establish a more

thorough baseline for comparison.

An important topic for future research will be to modify

the system to cope with online operation, i.e, implement

online nomalization of the input, online learning, and online

neural output normalization. An online version of MLP

presented in [3] might be used for this purpose, and extended

behavior segmentation methods will have to be devised.

A further improvement of the current method will be to ac-

tively exploit the presence of multiple prediction timescales.

After all, there exists a set of predictions from different times

in the past for any given point in time, which might be

exploited for stabilizing predictions. We also plan to compare

the current system which predicts behavior primitives, i.e.,

states, to to a system predicting changes of states to see

whether a better prediction quality can be obtained.

Finally, we plan to investigate behavior prediction in more

complex scenarios. For this purpose, we will use information

about the position and speed of surrounding vehicles, as well

as road geometry and traffic signs. To cope with the increased

complexity, situation-specific learning subsystems will be

introduced, along with a method to fuse the predictions given

by different learning subsystems.

Concerning the applications of such a behavior prediction

system, several possibilities are available. The knowledge

about the predicted future behavior of the driver can be used

to detect a dangerous behavior, as presented in [14]. Another

possible application is the use of this prediction to anticipate

and start an early braking of the car. We expect such a system

to reduce the energy consumption, especially in inner-city

environment where braking behavior occurs often.

REFERENCES

[1] A. Demcenko, M. Tamosiunaite, A. Vidugiriene, and A. Saudargiene,
“Vehicle’s steering signal predictions using neural networks,” in Intel-

ligent Vehicles Symposium, 2008, pp. 1181–1186.
[2] M. Brackstone and M. McDonald, “Car following: A historical re-

view,” Transportaton Research F, pp. 181–96, 2000.
[3] M. Garcia Ortiz, B. Dittes, J. Fritsch, and A. Gepperth, “Autonomous

generation of internal representations for associative learning,” in
Artificial Neural Networks - ICANN 2010, ser. Lecture Notes in
Computer Science, K. Diamantaras, W. Duch, and L. Iliadis, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6354, pp. 247–256.

[4] X. Ma, “A neural-fuzzy framework for modeling car-following behav-
ior,” in Systems, Man and Cybernetics, 2006, pp. 1178 – 1183.
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