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Abstract—We present a model of online Goal Babbling for
the bootstrapping of sensorimotor coordination. By modeling
infants’ early goal-directed movements we show that inverse
models can be bootstrapped within a few hundred movements
even in very high-dimensional sensorimotor spaces. Our model
thereby explains how infants might initially acquire reaching
skills without the need for exhaustive exploration, and how robots
can do so in a feasible way. We show that online learning in a
closed loop with exploration allows substantial speed-ups and,
in high-dimensional systems, outperforms previously published
methods by orders of magnitude.

Index Terms—Goal Babbling, Sensorimotor Exploration

I. INTRODUCTION

Infants are born without being able to perform the most
basic motor skills like reaching for an object and must to
learn to control their body during the course of development.
Successful control of such tasks can be well understood with
the notion of internal models [1]. Internal models describe
relations between motor commands and their consequences.
Once internal models are established for a certain task, a
forward model predicts the consequence of a motor command,
while an inverse model suggests a motor command necessary
to achieve a desired outcome. Learning internal models from
scratch requires exploration. In artificial systems, exploration
is traditionally addressed by “motor babbling” [2], [3] in
which motor commands are randomly selected and their
consequences are observed. This kind of exploration becomes
very inefficient with increasing dimensionality of the senso-
rimotor space. The exploration can be significantly improved
by active learning schemes [4], [5], frequently discussed under
the notion of intrinsic motivation [6]. Although the risk of
generating uninformative examples can be reduced with these
methods, they assume that the sensorimotor space can be
entirely explored. However, high-dimensional motor systems
like human ones can not be entirely explored in a lifetime.

Tasks in sensorimotor learning are typically substantially
lower-dimensional than the motor systems themselves. Reach-
ing for an object can be done in an infinite number of ways,
because human bodies as well as modern humanoid robotic
systems have more degrees of freedom than necessary to solve
the task. While this redundancy is often considered a problem
for sensorimotor learning [7], [8], it also reduces the demand
for exploration. If there are multiple ways to achieve the
same result there is no inherent need to know all of them.

Infants make heavy use of this opportunity in the beginning
of their sensorimotor development. They initially master the
feedforward control of reaching movements [9], [10], and
choose the same set of motor commands for a target every
time. Only later on they are able to adapt their movements to
various situations and incorporate visual error correction on
the fly.

A. Goal-directed Exploration

Learning only one valid solution for reaching can be done
with enormous data-efficiency in high dimensions, if appropri-
ate training data is available [11]. If data has to be generated
autonomously, the question is how to shape an exploration
mechanism that allows to find appropriate solutions without
the need to explore everything. It has been shown that infants
explore by far not randomly or exhaustively as supposed by
“motor babbling”. Rather, they attempt goal-directed actions
already days after birth [12], [13], which indicates a strong
role of “learning by doing”. Infants learn to reach by trying
to reach. Such goal-directed exploration processes, or “Goal
babbling” allow to focus on behaviorally relevant data. The
conceptually simple character of Goal Babbling is particu-
larly well suited to explain infants mastery of sensorimotor
development. Only one mechanism is needed for exploration
and control which alleviates the problem to decide when to
stop exploratory behavior and to start acting. Goal Babbling
describes an entirely incremental acquisition of sensorimotor
coordination which even allows to compensate for ongoing
morphological changes like growth [14].

Goal-directed exploration has been part of many learning
schemes for inverse models, but only been possible with
prior knowledge [15], [16] or non goal-directed pre-training
[17], [18]. Only recently, models have been proposed that
investigate a consistent, goal-directed bootstrapping of internal
models for sensorimotor control. In [19], a partial forward
model is learned that is analytically inverted for goal-directed
feedback control. A full forward model, as well as a full
feedback model can, however, only be learned with exhaustive
exploration. We argue that the most direct way to deal with
partial exploration of the sensorimotor space is to start with
exactly one solution that is learned directly in a feedforward
function. In [20], [14] we have introduced a model for learning
such functions with Goal Babbling based on batch-gradient
learning. We have shown that the approach allows to bootstrap
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Fig. 1. A robot arm with two joints (q = (q(1), q(2)),m = 2) is controlled
to achieve a certain height of the effector (n = 1). An inverse estimate g(x∗)
suggests one posture for each desired height.

inverse kinematics for humanoid morphologies such as the
Honda humanoid and iCub and in the presence of sensory
noise or morphological changes. Although the approach does
not need substantially more examples with increasing di-
mensions, the general exploratory cost is comparably high
because a number of examples needs to be collected before
a gradient update is performed in batch mode. In the present
work, we propose an online formulation of this approach and
demonstrate that it bootstraps inverse models by orders of
magnitude more efficiently.

B. Online vs. Batch Learning of inverse Models

In machine learning tasks with fixed data sets online learn-
ing is typically regarded as a stochastic approximation of
batch gradients. If online learning occurs during goal-directed
exploration, the situation is different, because the example
distribution changes over time depending on the learning
dynamics. Example based online learning from goal-directed
exploration has been investigated for the tuning of inverse
models in various flavors like differential kinematics [17] or
operational space control [18]. A central difficulty is that
the online learning applies a positive feedback loop on the
examples. Perturbations – either self-generated exploratory
noise or from external sources – are reinforced by the learning
which can cause the inverse model to get instable or drift.

The contribution of this paper is twofold. Firstly, we show
that simple and developmentally plausible regularization meth-
ods allow to compensate such instabilities and allow for online
learning even during an initial bootstrapping. Secondly, we
show that online learning is even highly beneficial for boot-
strapping: The same feedback loop that amplifies perturbations
in the nullspace also amplifies the discovery of new positions
in the operational space. Since each step in Goal Babbling is
informed by the previous ones this allows substantial speedups
in the overall learning process. The next section introduces our
model in detail. In section III we investigate the speedups and
the scalability experimentally.

II. ONLINE GOAL BABBLING

In the present work, we investigate the kinematic control of
redundant systems. Formally, we consider the relation between
joint angles q ∈ Q ⊂ Rm and effector poses x ∈ X ⊂ Rn,
where m is the number of degrees of freedom (DOF) and
n is the dimension of the target variable (e.g. n =3 for the
spatial position of a hand). The forward kinematics function
f(q) = x describes the unique and causal relation between
both variables. An inverse model is a function g(x∗)=q that
computes joint angles for a given target x∗ ∈ X∗ such that
the desired position is actually reached (f(g(x∗))=x∗). This
function has parameters θ that are adapted during learning. An
example inverse estimate g(x∗) is shown in Fig. 1.

The general idea for the learning of an inverse estimate is
to explore sequences of motor commands qt over timesteps t.
These motor commands are applied and the resulting effector
positions xt are observed:

xt = f(qt). (1)

Examples (xt, qt) can then be used for supervised adaption
of the inverse estimate. In order to generate examples, Goal
Babbling starts with an initial inverse estimate g(x∗, θ0) that
always suggests some comfortable home posture: g(x∗, θ0)=
const= qhome. Then continuous paths of target positions x∗t
are iteratively chosen from the set X∗. These targets are tried to
reach with the inverse estimate as expressed in the fundamental
equation of goal-directed exploration:

qt = g(x∗t , θt) + Et(x
∗
t ). (2)

The outcome xt is observed and the parameters θt of the
inverse estimate are updated immediately before the next
example is generated. The perturbation term Et(x

∗) adds
exploratory noise in order to discover new positions or more
efficient ways to reach for the targets. This allows to unfold
the inverse estimate and finally find correct solutions for all
positions in the set of targets X∗.

A. Path Generation

A major aspect of Goal Babbling is how to choose target
positions. We do so by generating continuous, piecewise linear
target movements. The initial target (t = 0) is the effector
position belonging to the home posture: x∗0 = f(qhome). In
the first movement, the system tries to move to another target
x∗L which is randomly chosen from X∗. Between the timesteps
0 and L, the target positions are defined by the linear sequence
between x∗0 and x∗L. Afterwards a new target x∗2L is chosen
from X∗ and the second movement is attempted from x∗L to
x∗2L. Generally this pattern is denoted as

x∗r·L+l =
L− l
L
· x∗r·L +

l

L
· x∗(r+1)·L, (3)

where r is the number of already executed movements, L is
the length of each path and l = 1 . . . L denotes the substeps
within one movement. Throughout this paper we use L = 25.
An example is generated for each of these targets according
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Fig. 2. Online Goal Babbling in the joint space of example Fig. 1. The x-axis encodes the angle of the first joint, the y-axis the angle of the second joint.
Colored redundancy manifolds show the joint angles that apply the same effector height. The inverse estimate is shown as markered manifold through the
two-dimensional joint space. Explored examples are shown as small green crosses. Our exploration scheme involves two kinds of movements: (a) the inverse
estimate is used for trying to move from a target x∗rL (here −1) to some other target x∗

(r+1)L
(here +1). Due to the perturbation term Et the explored

postures are not exactly aligned with the solutions suggested by the inverse estimate. (b) the effector moves from the last actuated joint angles back to the
home posture. Fig. (c) shows how the varying perturbation terms cover the local surrounding of the inverse estimate.

to equations 1 and 2. An exemplary movement generated in
this way is shown in Fig. 2a.

In non-linear redundant domains it is generally possible to
generate inconsistent examples with same effector pose but
different joint angles. Learning from such examples leads to
invalid solutions [16]. We have previously shown in [20] that
the structure of goal-directed exploration allows to resolve
such inconsistencies by means of a simple weighting scheme:

wdirt =
1

2

(
1 + cos^(x∗t − x∗t−1, xt − xt−1)

)
, (4)

wefft = ||xt − xt−1|| · ||qt − qt−1||−1 , (5)

wt = wdirt · wefft . (6)

wdirt measures whether the actually observed movement and
the intended movement have the same direction. wefft mea-
sures the the kinematic efficiency of the movement and assigns
high weight to examples that achieve a maximum of effector
movement with a minimum of joint movement. For learning,
each example (xt, qt) is weighted by wt. In addition to resolv-
ing inconsistencies, the weighting also regularizes the inverse
estimate. Efficient movements will dominate the learning in
the long term and cause the inverse estimate to select smooth
and comfortable solutions.

A special kind of movement is used to regularize the inverse
estimate and prevent drifts into irrelevant regions of the senso-
rimotor space. With a probability phome (0.1 throughout this
paper), the next movement after a target x∗rL has been applied
is not another goal-directed movement. Instead, the system
returns to its home posture. Similar to infants practicing their
motor skills, the system returns to a stable point after a while
and starts to practice again. This kind of movement leads to a
repetitive presentation of examples close to the home posture
and forces the inverse estimate to reproduce these postures

for goal-directed movements. It acts as a developmentally
plausible stabilizer that helps to stay in known areas of the
sensorimotor space [19], [20]. We model this movement as a
linear path in joint space in order to get smooth and continuous
behavior for online learning: the system moves from the last
actuated joint angles qr·L to its home posture qhome, whereas
Eqn. 2 is replaced by the following expression:

qr·L+l =
L− l
L
· qr·L +

l

L
· qhome . (7)

For every generated joint configuration, the resulting effector
pose is observed (Eqn. 1) and learning is applied online in the
same way as for goal-directed movements. These examples are
only weighted with wefft , because targets x∗t for the evaluation
wdirt do not exist during this homeward movement. After the
home posture has been reached, a goal-directed movement is
attempted from the initial target x∗(r+1)·L = f(qhome). An
example of this movement type is shown in Fig. 2b.

B. Structured Continuous Variation
In order to find kinematic solutions for all target positions,

it is necessary to consider exploratory noise, or rather pertur-
bations of the motor system. Such perturbations arise natu-
rally in physical systems and lead to the exploration of new
postures that would not be suggested by the inverse estimate.
Physical perturbations typically lead to smooth variations of
the intended movements. At any point in time we model this
effect by adding a small, randomly chosen linear function to
the inverse estimate.

Et(x
∗) = At · x∗ + bt, At ∈ Rm×n, bt ∈ Rm (8)

Initially, all entries ei0 of the matrix A0 and the vector b0
are chosen i.i.d. from a normal distribution with zero mean
and variance σ2. In order to explore the local surrounding of



the inverse estimate, we vary these parameters slowly with
a normalized Gaussian random walk. A small value δit+1 is
chosen from a normal distribution N (0, σ2

∆) with σ2
∆� σ2,

and added to the previous value eit. The variance of the
resulting value is the sum of the individual variances σ2+σ2

∆.
We normalize with the factor

√
σ2/(σ2+σ2

∆) to keep the
overall deviation stable at σ:

ei0 ∼ N (0, σ2), δit+1 ∼ N (0, σ2
∆) ,

eit+1 =

√
σ2

σ2 + σ2
∆

· (eit + δit+1) ∼ N (0, σ2) .

Hence, Et(x∗) is a slowly changing linear function. It is
smooth at any time, which is important for the evaluation of
the weighting scheme (Eqn. 4 and 5). It is furthermore zero
centered and limited to a fixed variance which leads to a local
exploration around the inverse estimate (see Fig. 2c).

C. Incremental Regression Model
For learning, a regression mechanism is needed in order

to represent and adapt the inverse estimate g(x∗). The goal-
directed exploration itself does not require particular knowl-
edge about the functioning of this regressor, such that in
principal any regression algorithm can be used. For a safe
and incremental online learning we have chosen a local-linear
map [21] for our experiments. The inverse estimate consists of
different linear functions g(k)(x), which are centered around
prototype vectors p(k) and active only in its close vicinity
which is defined by a radius d. The function g(x∗) is a linear
combination of these local linear functions, weighted by a
Gaussian responsibility function b(x):

g(x∗) =
1

n(x∗)

K∑
k=1

b

(
x∗−p(k)

d

)
· g(k)

(
x∗−p(k)

d

)
b(x) = exp

(
− ||x||2

)
n(x) =

K∑
k=1

b

(
x−p(k)

d

)
g(k)(x) = W (k) · x+ o(k)

The normalization n(x) scales the sum of influences of the
components to unity, which is known as soft-max.

The inverse estimate is initialized with a single local func-
tion with center p(1) = f(qhome), that outputs the constant
value qhome (W (1) = 0m×n and o(1) = qhome). New local
functions and their prototype vectors are added dynamically.
Whenever the learner receives an input x, that has a distance of
at least d to all existing prototypes, a new prototype pK+1 = x
is created. In order to avoid abrupt changes in the inverse
estimate, the function gK+1(x) is initialized such that its
insertion does not change the local behavior of g(x∗) at the
position x. We set the offset vector oK+1 to the value of
the inverse estimate before the insertion of the new local
function: oK+1 = g(x). The weight matrix is initialized
with the Jacobian matrix J(x) = ∂g(x)

∂x of inverse estimate:
WK+1 = J(x).

(a) After 10 reaching movements.
EX = 0.225, Dhome = 0.615

(b) After 100 reaching movements.
EX = 0.064, Dhome = 0.942

(c) After 1000 reaching movements.
EX = 0.011, Dhome = 0.995

(d) After 10000 reaching movements.
EX = 0.002, Dhome = 0.737

Fig. 3. Example of the bootstrapping dynamics for a five DOF arm with
learning rate η=0.1. The inverse estimate rapidly finds valid solutions as the
actual position (black grid) become congruent with the targets (gray grid).
Blue posture show how the redundancy is resolved.

In each timestep, the inverse estimate is fitted to the cur-
rently generated example (xt, qt) by reducing the weighted
square error:

EQw = wt · ||qt − g(xt)||2

The parameters θ = {W (k), o(k)}k of g(x∗) are updated using
online gradient descent on EQw with a learning rate η:

W
(k)
t+1 =W

(k)
t − η ∂EQw

∂W (k)
, o

(k)
t+1 = o

(k)
t − η

∂EQw
∂o(k)

III. EXPERIMENTS

We use simulated planar robot arms as an illustrative test
case to investigate online Goal Babbling. The aim is to control
the effector-position in the 2D plane (n = 2). An example
with five degrees of freedom is shown in Fig. 3. The target
positions x∗ are arranged in the gray grid structure. The black
grid shows the actually reached positions (x = f(g(x∗))).
Initially, the inverse estimate is fixed at the home position, but
expands rapidly towards the target positions. After a number
of movements, target and actual grids are in congruence. An
accurate inverse estimate has been bootstrapped. Blue postures
show configurations generated by the inverse estimate for
several different target positions and thus how the redundancy
is resolved.
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Fig. 4. Statistics of the bootstrapping dynamics for two different learning
rates. (a) The performance error EX decreases rapidly over the number
of movements. A ten times higher learning rate results in a speed up of
approx. 20. (b) The distance from the home posture initially increases as the
inverse estimate unfolds. High learning rates η initially select less comfortable
solutions which are then gradually optimized.

We are interested in three different experimental measures
to assess the characteristics of the bootstrapping:

1) Accuracy of the bootstrapped inverse models.
2) Comfort of the selected solution.
3) Speed of the bootstrapping process.

The accuracy is measured as the average distance between the
target positions x∗i ∈ X∗ and the actually reached positions:

EXr =
1

N

N∑
i=1

||x∗i − f(g(x∗i , θrL))|| (9)

As a measure of comfort we compute how far the suggested
postures are away from the home posture:

Dhome
r =

1

N

N∑
i=1

∣∣∣∣qhome − g(x∗i , θrL)∣∣∣∣ (10)

This measure can not be zero for a bootstrapped model,
because the home posture has to be left in order to reach
for different targets. Nevertheless it allows to compare how
comfortably different inverse estimates resolve the redundancy.

We assess the speed of bootstrapping by measuring the num-
ber of movements until a certain percentage of independent

trials has reached some accuracy level:

S(Q, eX) = argmin
r

( Q ≤ p(EXr ≤ eX) ) (11)

For instance, S(0.9, 0.1) counts the number of reaching move-
ments, until 90% of the trials have reached a performance error
below or equal to 0.1. The statistics presented in this section
are all computed over 100 independent trials.

A. Effects of the Learning Rate
The most important variable for online learning from goal-

directed exploration is the learning rate η. In supervised
learning from fixed data sets, online learning is used as
stochastic approximation of batch methods. In goal-directed
exploration, however, the data set is not fixed but continuously
constructed by the learner. This interweaved relation of data
generation and learning leads to non-trivial effects with respect
to the choice of the learning rate.

We used parameters σ = 0.05, σ∆ = 0.005 and d = 0.1
for our experiments. The home posture is defined by setting
the first joint to −π3 and the remaining joints to π

6 , which
corresponds to a slightly bent shape with the effector at zero
height. Fig. 4a shows the development of the performance
error EXr over the number of movements r for the 5 DOF
planar arm with a total length of 1m. Bold lines show the
median error, thin lines the 10% and 90% quantiles and the
filled areas correspond to the range between the 25% and 75%
quantiles. For both η = 0.1 and η = 0.01 the error decreases
reliably and we obtain an accurate inverse model. Obviously
the bootstrapping is faster for the higher learning rate, but
the speedup does not scale with the factor 10 between the
learning rates. For η=0.1 the performance error has reached
a median level of 0.04 after 100 movements. For η=0.01 it
takes 2000 movements to reach the same error level. Hence,
the bootstrapping is 20 times faster for the high learning rate,
although the rate itself is only 10 times higher. The reason for
this non-trivial speedup is the incremental character of the
goal-directed data-generation. Because the creation of each
example is already informed by learning from the previous
examples, learning does not only improve the inverse estimate,
but will also result in a more informative next example. In an
online scenario, this causes a positive feedback loop. Higher
learning rates imply a higher “gain” in this loop and accelerate
the bootstrapping over the sheer values of the learning rates.

The distance from the home posture Dhome
r for the same

trials is shown in Fig. 4b and displays another qualitative effect
of the learning rate. Low learning rates let the distance from
the home posture increase gradually as the inverse estimate
unfolds. It finally reaches a stable level which corresponds to
a comfortable solution. High learning rates, in contrast, cause a
rapid increase with high variance. The bootstrapping initially
sticks to the very first solution that is observed due to the
random perturbation term. This can result in a less comfortable
redundancy resolution. After several thousand movements,
the distance decreases again as comfortable solutions receive
higher weights weff and dominate the learning in the long
term.
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Fig. 5. Bootstrapping results for various learning rates between 0.001 and 0.5. (a) The number of movements needed to reach 10% of the initial error
decreases rapidly for higher learning rates. (b) The performance error after 107 movements is very low for all learning rates. Very low learning rates are not
fully converged. (c) The final distance from the home posture increases gradually for higher learning rates.

An example trial for η = 0.1 is shown in Fig. 3. Already
after 10 movements the inverse estimate has expanded from
the home posture and is roughly aligned with the correct
movement directions, and rapidly expands further. After 1000
movements, the inverse estimate starts to consolidate the
redundancy resolution and the selected postures become closer
to the home posture.

Results for a high range of learning rates [0.001; 0.5] are
summarized in Fig. 5. The bootstrapping speed is continuously
increased for higher learning rates. Fig. 5a shows the number
of movements, until the performance error is reduced 10%
of its initial value (S(Q, 0.1 · EX0 ), quantiles Q shown are
10, 25, 50, 75, 90). For the highest rate η = 0.5, 50%
of the trials have reached this level already after 34 move-
ments (S(0.5, 0.1 · EX0 ) = 34). After a total number of
107 movements the trials for all learning rates have reached
a performance error in the millimeter range (Fig. 5b). For
very low learning rates the inverse estimates are not fully
converged after that time, as indicated by the slightly increased
error. For high learning rates both final performance error
and the home posture distance (Fig. 5c) increase gradually.
The positive feedback loop between exploration and learning,
which causes the speedup effects, also starts to destabilize the
learning at high rates. Nevertheless the results are in a very
good range due to the regularization by the home posture and
the weighting scheme.

B. Scalability up to 50 DOF

The outstanding property of Goal Babbling is its scalability
to many dimensions, which we investigate in the following
experiment. For a direct comparison to the previous experi-
ment with five degrees of freedom we investigate the same
setup, but split the arm in m segments of equal length, each
actuated by one joint. Hence, an arm with 20 degrees of
freedom comprises 20 segments of length 0.05m. The home
posture is chosen as −π3 for the first joint and 2π

3(m−1) for the
remaining joints. The target positions are identical to those in
the first experiment as indicated in Fig. 6. For a maximum of
comparability, we need to scale down the perturbation term:

(a) After 10 reaching movements.
EX = 0.353, Dhome = 0.262

(b) After 100 reaching movements.
EX = 0.038, Dhome = 1.173

(c) After 1000 reaching movements.
EX = 0.004, Dhome = 0.940

(d) After 10000 reaching movements.
EX = 0.002, Dhome = 0.922

Fig. 6. Example of the bootstrapping dynamics for 20 degrees of freedom.
The inverse estimate unfolds with high speed also in high dimensions. The
selected postures get smoother and more comfortable over time.

if the variability per joint is constant, it has a higher effect of
the end effector for high dimensional systems. This leads to a
faster discovery of effector positions but also more instability.
We can approximate the deviation at the effector σX for an
entirely stretched arm as a function of the joint variability σ
and the number of DOF m:

σX = σ ·
√
m+ 1

2
. (12)
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Fig. 8. Bootstrapping results for various numbers of joints. (a) The number of movements needed to reach 10% of the initial error increases only very
gradually. (b) The performance error after 106 movements is very low in all cases. (c) The final distance from the home posture.
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Fig. 7. Statistics of the bootstrapping dynamics for 20 and 50 degrees of
freedom. Both performance error (a) and home posture distance (b) show
a very similar behavior for 20 and 50 DOF. Goal Babbling scales without
substantial extra cost in high dimensions.

For this experiment we scale σ such that σX is constant at
0.05·

√
3 which is the variability in the first experiment. The

update parameter is set to σ∆=0.1·σ. The learning rate is set
to η=0.1.

An example trial for m=20 is shown in Fig. 6. The behavior
over time, and in particular the speed of bootstrapping, is very
similar to the previous five DOF example. The performance
error is reduced very rapidly during the first 100 movements.

After 1000 movements the inverse estimate is already very
accurate, but does not yet use optimally comfortable joint
configurations. These are further optimized in the following
movements as the configurations get smoother and the avg.
distance to the home posture decreases. Fig. 7 shows a
comparison between m = 20 and m = 50 over time. The
temporal characteristics of the performance error are virtually
identical in the two cases and also compared to the m = 5
experiment (see Fig. 4). Also the home distance values show
the same behavior, with slightly increased values for m=50
in the intermediate movements.

Results for values of m between 2 and 50 are summarized
in Fig. 8. The most important result is that the average
bootstrapping speed is virtually constant across the entire
range of m. Even for 50 degrees of freedom, 50% of the trials
have reached the 10% error level after after 128 movements
(S(0.5, 0.1 · EX0 ) = 128). However, the distribution becomes
increasingly heavy-tailed as the values for the 90% quantile
S(0.9, 0.1) grow very slowly (e.g. S(0.9, 0.1)=364 for m=
50). After a total number of 106 movements the performance
error is approximately constant and very low at 1mm. Only
for m = 2 it is even lower with almost zero variance. Here
the problem does not contain local redundancy, but only two
separated choices “elbow up” and “elbow down” that can not
be flipped by local perturbations. Higher values of m allow to
modify the redundancy resolution continuously, which causes
minor local averaging errors.

IV. DISCUSSION

High dimensional sensorimotor spaces can not be entirely
explored in a lifetime. Goal-directed exploration processes
provide a developmentally plausible and technically powerful
way to circumvent this problem by focusing on behaviorally
relevant regions in the sensorimotor space. Our experiments
show that inverse models can be entirely bootstrapped with
high speed in very high dimensional domains. Thereby the
problematic amplification of perturbations is regularized by
our weighting scheme and the consistent use of a home
posture. The results show that online learning during Goal
Babbling is not only possible, but highly beneficial. The search



for solutions is boosted in the feedback loop of exploration
and learning along continuous paths. This allows a very rapid
discovery of valid solutions within a few hundred movements,
which is a time span also required by humans to learn new
sensorimotor mappings [22]. In contrast, our previous batch-
gradient model [20] required several thousand epochs, each
involving a few hundred movements, to reach a comparable
accuracy. Also the model in [23] was reported to take several
ten-thousand to hundred-thousand movements on a 15 DOF
planar arm to reach a coarse level of coordination. A precise
numeric comparison between these models is certainly del-
icate, because they have entirely different parametrizations.
The actual results, however, show that our present model
outperforms these previous approaches by several orders of
magnitude.

The learning of just one solution might appear to be a
deficit and a lack of flexibility. In contrast to an exhaustive
exploration it is, however, systematically possible in high
dimensions. The number of required movements increases
only very gradually with the number of dimensions in which
the exploration is performed. Our experiments show an al-
most constant behavior while an exhaustive motor babbling
approach would require an exponential increase of the ex-
ploration to cover the sensorimotor space. Infants need to
master a very high dimensional motor system and develop on a
similar pathway: starting with early goal-directed movements
[12] they initially master feedforward control before reaching
movements become adaptive and feedback control can be
applied [9], [10]. The mastery of feedforward control before
adaptive feedback mechanisms can be applied seems very
natural. Yet, traditional models of sensorimotor learning like
feedback-error learning [15] and learning with distal teacher
[16] fail to explain this ordering of skill acquisition. Both
models require full knowledge about the sensorimotor space
which can then be used to extract a feedforward controller. In
contrast, our model of Goal Babbling shows how a coherent
solution can be bootstrapped without prior knowledge by
means of a simple “trying to reach” method that is develop-
mentally plausible and technically feasible. For high learning
rates we find that initially one solution is picked that might
be uncomfortable. Later on it becomes smooth and more
comfortable, which is an efficient developmental path also
observed in infants [24].

Although the learning of a single valid solution does not
permit instantaneous adaptation to novel situations, it allows
to adapt to ongoing changes such as body growth [14]. In
fact, the role of feedforward control does not diminish in
adult sensorimotor control, which is well known from prism-
glass experiments [25]. An important objective for future re-
search is to continue the developmental pathway with learning
architectures that allow for more adaptivity. Here the rapid
bootstrapping needs to be combined with the expressiveness
and flexibility of other models such as [26]. This describes an
efficient goal-directed pathway on which at first valid solutions
are discovered as fast as possible and which are later on
augmented as it is necessary to achieve desired results.
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