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Computational Audiovisual Scene Analysis for Dialog Scenarios

Rujiao Yan1,2, Tobias Rodemann2 and Britta Wrede1

Abstract— We introduce a system for Computational Audio-
Visual Scene Analysis (CAVSA) with a focus on human-robot
dialogs in multi-person environments. The general target of
CAVSA is to learn who is speaking now, where the speaker
is, and whether the speaker is talking to the robot or to other
persons. In the application specified in this paper, we aim at
estimating the number and position of speakers using several
auditory and visual cues. Our test application for CAVSA is the
online adaptation of audio-motor maps, where vision is used
to provide position information about the speaker. The system
can perform this adaptation during the normal operation of
the robot, like when the robot is engaging in conversation
with a group of humans. Comparing our online adaptation of
audio-motor maps using CAVSA with prior online adaptation
methods, our approach is more robust in situations with more
than one speaker and when speakers dynamically enter and
leave the scene.

I. INTRODUCTION

In most robotics scenarios, a robot is usually interacting
with multiple people. Thus it should be able to learn who is
speaking now, where the speaker is, and whether the speaker
is talking to the robot or to other persons. Computational
Audiovisual Scene Analysis (CAVSA) is aimed at fulfilling
these tasks. CAVSA plays an important role in human-
robot interaction, for instance it enables the robot to better
understand dialog situations, improves speech recognition by
assigning words to speakers, and relates visual and auditory
features of a speaker. To evaluate the performance of CAVSA
we employ it for the online adaptation of audio-motor maps.
This task depends strongly on a correct scene representation
and the performance can be measured by comparison to
audio-motor maps calibrated in standard offline procedures.

In robotics, many sound localization systems use audio-
motor maps, which describe the relationship between binau-
ral cues and sound position in motor coordinates (azimuth
and elevation). The main binaural cues are interaural time
difference (ITD) and interaural intensity difference (IID)
[1]. Using audio-motor maps one can compute the sound
source position from measured audio cues. We concentrate
on audio-motor maps for azimuth to ease the description
of our algorithm, but the approach can be expanded to
elevation. Audio-motor maps can be calibrated offline by
measuring audio cues for several known positions [2].
However, audio-motor maps can change and need to be
relearned whenever any relevant part of the robot or the
environment was modified, for example, microphone type,

1 Research Institute for Cognition and Robotics (CoR-
Lab), Bielefeld University, 33594 Bielefeld, Germany
{ryan,bwrede}@cor-lab.uni-bielefeld.de

2 Honda Research Institute Europe GmbH, Carl-Legien-Str. 30, 63073
Offenbach, Germany tobias.rodemann@honda-ri.de

microphone position, robot head and room. Additionally,
it is difficult to estimate the quality of the current maps.
Hence a continuous online adaptation has been considered
during the normal operation of the robot [3]. It is known that
humans continuously adapt the audio-motor maps to their
current auditory periphery, while the dimensions of the head
and external ears are growing from birth to adulthood. Even
adults have sound localization plasticity, for instance when
molds are placed into the external ears to alter audio-motor
maps [4]. Rodemann et al. [3] suggested a purely auditory
online adaptation approach, where audio provides position
information of limited precision.

Vision plays an important role in calibration of audio-
motor maps in humans and animals [5]–[7]. Thus vision
has been used as the feedback signal for higher precision
in adaptation of audio-motor maps in robotics, as per [8],
[9]. However, the approach in [8] fails when more than
one person or the wrong speaker appears in the camera
image. Nakashima et al. [9] proposed another approach
using visual feedback in a simplified environment, where
a red marker was attached to the sound source and no
other red object exists. These methods employ heuristics
for linking visual and auditory information and can only
work in limited environments. Besides, both methods need
extra head motions to search for the visual marker. In
comparison to state of the art, our CAVSA method is used to
find the correct visual correspondence of the current sound
source, and aims at enabling online adaptation to run in
more complex environments. If CAVSA selects an unrelated
visual signal for the adaptation, the quality of audio-motor
maps may deteriorate. Given precise measurements of visual
position and audio cues, the quality of maps depends on
the performance of CAVSA. This is the reason why we
test CAVSA in online adaptation of audio-motor maps. Our
system does not require specific motions of the robot, so that
audio-motor maps can be continuously online adapted during
the normal operation of the robot.

For CAVSA the scene is represented with auditory and
visual features using the concept of proto-objects. Proto-
objects can combine an arbitrary number of features in a
compressed form. For more information about proto-objects
see [10], [11]. The visual and audio proto-objects for the
same speaker are then integrated based on position informa-
tion.

A. Comparison to related work

Currently there is a broad range of applications using
audiovisual integration in multi-person environments. The
first application is speaker recognition (see e.g. [12]), where



an audiovisual database consisting of all speakers is required
for training. The second application is audiovisual multi-
person tracking. Most methods use only sound position as
an auditory feature and thus fail when a speaker leaves the
scenario for a while and reappears or the speaker moves
while not talking [13], [14]. In this case CAVSA could
flexibly add more auditory and visual features to identify
the speaker. Multi-person tracking can also be implemented
in a smart-room environment [15], where many auditory and
visual sensors are installed. The third group is audiovisual
speaker diarization systems [16], which can index who spoke
when in a video file. The training of diarization is normally
an offline process, where the data can only be processed
after complete recording. Another application searches for
the visual part of the current speaker in a video using
synchrony between lip motion and speech [17]. The approach
requires that the lip of the current speaker is always in the
field of view. In comparison to these methods, our CAVSA
approach can combine many low or mid level auditory and
visual features to achieve a high performance of audiovisual
integration. It runs in an unsupervised, real-time, online and
incremental manner. Besides, we use only a humanoid robot
head with a pair of cameras and a pair of microphones. In
this work just the left camera is employed to capture the
visual signal. The head is mounted on a pan-tilt unit.

Additionally, while current approaches in Computational
Auditory Scene Analysis (CASA) mostly deal with parallel
sources using microphone arrays (see e.g. [18]), we focus
on purely sequential sounds. Our system could be used
after sound source separation in case of concurrently active
sources.

II. CAVSA

In this section we introduce the concept of Computational
AudioVisual Scene Analysis (CAVSA). In CAVSA the scene
is represented with audio and visual proto-objects. Proto-
objects for the same speaker are grouped together in auditory
and visual Short-Term Memories (STM) respectively. Visual
and audio proto-objects are then matched based on position.
Fig. 1 schematically illustrates the system architecture of
CAVSA. Proto-objects, STM and audiovisual association are
described below.

Fig. 1. System architecture of CAVSA. APO: audio proto-object, VPO:
visual proto-object.

A. Proto-objects

Proto-objects are a psychophysical concept and are con-
sidered here as a compressed form of various features.
Proto-objects can be tracked, pointed or referred to without
identification and enable a flexible interface to behavior-
control in robotics. For more information about proto-objects
see [10], [11].

1) Visual proto-objects: In the camera field of view the
visual objects can be segmented based on e.g. the similarity
of color or shape to a given reference model. A frontal face
detection algorithm based on [19] is used to extract visual
proto-objects in multi-person scenarios. We assume that the
person talking to robot is most of the time looking at the
robot face. For each of these proto-objects, the center of
the segment in the camera image is computed. The distance
between robot head and speakers is about 1m. Using the
distance information and saccade maps (see [20]), we can
calculate the face position in 3D world coordinates and
motor coordinates, and store them in the visual proto-object.
Actually, proto-objects could contain an arbitrary number
of features. Depending on the tasks, other features such as
object size, orientation, color histogram and texture could
also be used.

2) Audio proto-objects: A Gammatone Filterbank (GFB)
as a model of the human cochlea is employed in the auditory
preprocessing [11]. The GFB has 100 frequency channels
that span the range of 100 -11000 Hz. To form audio proto-
objects, we first segment audio streams based on energy.
An audio segment begins when the signal energy exceeds
a threshold and ends when the energy falls below this
threshold. We then derive start time, length and energy for an
audio proto-object. A filtering of audio proto-objects based
on segment length and energy is then performed, since short
or low power auditory signals are very probably noise. In
addition, an audio proto-object contains also population-
coded position cues (IID and ITD) and the estimated position
encoded as a population vector, which will be explained in
section III.

B. Short-term memory

In short-term memory (STM), proto-objects for the same
speaker are grouped together. When a new proto-object
appears, the procedure of entering it into STM can be
described as follows:
• If the STM is empty, the new proto-object is added to

the STM.
• If the STM already contains one or more proto-objects,

the distance or similarity of selected grouping features
are computed between the new proto-object and all
proto-objects in the STM. If the distance between the
new proto-object and the closest proto-object in the
STM is smaller than a threshold, these two proto-objects
are merged (averaged). Otherwise the new proto-object
is inserted into the STM.

• Proto-objects, which are not updated for more than a
certain period (200 s in our experiment) are removed
from the STM.



Fig. 2. An example of a position evidence vector, corresponding to output
firing rates from a bank of neurons with different receptive fields. Here the
estimated azimuth is −30◦.

Using such a STM, it is not necessary to buffer all the
incoming proto-objects for processing. Moreover, we can
match an audio proto-object to a visual proto-object, even
if it is out of sight for a while e.g. due to the movements of
robot head.

In auditory STM, grouping features could be position
and/or spectral energies. In visual STM one or more features
among position, color and size could be employed to group
visual proto-objects. In this work only position is used as a
grouping feature for the auditory and visual STM. In an audio
proto-object the position is represented by population code
vector. For more information about this population coding
see section III. The similarity of position vectors between
the new audio proto-object and an audio proto-object in
auditory STM is based on the scalar product of normalized
position vectors (mean 0, norm 1). We set the threshold of the
similarity to be 0.6 empirically. In visual STM the Euclidean
distance of positions in 3D world coordinates is calculated
and the threshold is set to 30 cm, so that slight movements
of speakers such as head shaking are tolerated.

C. Audiovisual association

Position is also used to match a visual proto object and an
audio proto-object from their STMs. Auditory position evi-
dence vectors and visual positions in world coordinates must
be converted to the same metric, for which motor coordinates
(azimuth and elevation) are preferred. Speakers are about
1m away from the robot. In this paper we concentrate only
on azimuth as mentioned. The azimuth of an audio proto-
object is taken as the peak position in its position evidence
vector, while the azimuth of a visual proto-object is estimated
using saccade maps (see [20]). Fig. 2 shows an example of
a position evidence vector.

The azimuth distance between audio proto-object Ai (i ∈
[1,M]) and visual proto-object Vj ( j ∈ [1,N]) is denoted as
∆X(Ai,Vj), where M and N stand for the number of audio and
visual proto-objects in auditory and visual STM respectively.
The relative probability that audio proto-object Ai belongs to
visual proto-object Vj can then be approximated as:

Pcommon(Ai,Vj)≈ exp
(
−∆X(Ai,Vj)

2

2 ·δ 2
AV

)
, (1)

where the standard deviation δAV represents the average
difference in estimated azimuth between an audio and a
visual proto-object which are caused by the same speaker.

Fig. 3. Detection of the current speaker. Face detection of the current
speaker is visualized. To easily evaluate the results, the current speaker was
required to raise one hand.

Next, we check how certain the association between visual
proto-object VjMax with the maximal probability and Ai is. If
one visual proto-object shows a very high probability and
all other visual proto-objects have a low probability, this
indicates a reliable association. Conversely, when all visual
proto-objects have quasi equal probability, the association is
unreliable. The uncertainty is computed using the entropy of
the normalized probability. A similar usage of entropy can
be found in speech recognition, as per [21]. All probabilities
Pcommon(Ai,Vj) for audio proto-object Ai are normalized such
that they sum up to 1. The normalized probability is denoted
as:

P̂common(Ai,Vj) =
Pcommon(Ai,Vj)

N
∑
j=1

Pcommon(Ai,Vj)

. (2)

The entropy for Ai is given as:

Hi =


0 if N = 1,
−

N
∑

j=1
(P̂common(Ai,V j)·log2 P̂common(Ai,V j))

log2 N if N > 1.
(3)

Here, the division by log2 N ensures that the maximal Hi
is 1 to easily set a threshold ΘH . If entropy Hi is larger
than ΘH , Ai and VjMax are not associated. ΘH was set to
0.8 empirically. The uncertainty of the whole audiovisual
association can be captured by averaging over all Hi :

H =

M
∑

i=1
Hi

M
. (4)

Given learned audio-motor maps, Fig. 3 illustrates an
example, where CAVSA is used in an online scenario to
visualize the current active speaker among two speakers who
stand in front of the robot.

III. ONLINE ADAPTATION

In this section we will describe how to find the matched
visual position to the current sound and how to adapt audio-
motor maps. In our system audio-motor maps represent the
relation between population-coded cues and position evi-
dence vectors. An audio-motor map M contains for each az-
imuth angle p (-90, -80, ..., 0, ..., 80, 90), each cue l (l = 1 for
IID, l = 2 for ITD) and each frequency channel f (1−100)
a population code vector M(p, l, f ,n). Nodes (neurons) n
have receptive field centers at (−0.9,−0.8, ...,0, ...,0.8,0.9).
We measure binaural cues in each frequency channel when



Fig. 4. System architecture of online adaptation using CAVSA

an onset appears, encode then the measured cues and store
them in the audio proto-object. For encoding, the same
set of neurons n is used and every measured cue IID or
ITD leads to an activation in the nearest neurons, so that
a population code vector is generated. In each frequency
channel f , population code vectors for all measurements
of cue l are then summed up in an audio proto-object.
Finally, each summed population code vector is normalized
to mean 0 and norm 1. Let us denote the encoded cue l
in frequency channel f , at node n as C(l, f ,n). To acquire
position evidence vector E(p), population response C(l, f ,n)
is compared with stored population responses M(p, l, f ,n) for
all positions p by computing scalar products. The peak in
position vector E(p) is taken as the estimated sound source
position. For more details see [11].

We use only the current audio proto-object instead of the
auditory STM (M = 1), since only information about the
current sound is required. The number of proto-objects in
visual STM (N) is considered as the number of speakers
in the dialog scenario. The system architecture of online
adaptation using CAVSA is illustrated in Fig. 4.

The matched visual proto-object is searched for us-
ing equation (1), (2) and (3). Note that if N = 1, then
P̂common(A,V ) = 1 and entropy H = 0. That means, if only
one visual proto-object exists in the visual STM, the audio
and visual proto-object are assumed to have a common
cause. During the learning of the audio-motor maps, the
standard deviation δAV in equation (1) is dynamically updated
depending on the quality of the current audio-motor map.
We approximate δAV by calculating the average difference
between estimated position in audio and visual proto-objects
over time using the following update rule:

δ
t
AV =

{
∆X(A,V ) ·w+δ

t−1
AV · (1−w) if N = 1,

δ
t−1
AV otherwise.

(5)

Here, t and w represent update step and weight respectively.
We set w = 0.1 · β dependent on the fixed adaptation rate
β , which controls the degree of adaptation for a single step.
∆X(A,V ) describes the position distance between the audio
and visual proto-object in the current adaptation step. δ t

AV is
updated only if just one visual proto-object exists. The initial
value δ 0

AV is set to 40◦ empirically.
In the experiments it was found that a visual proto-object,

which is not related to the current sound source but near
the correct visual proto object, can also enhance the quality
of audio-motor maps, particularly when the quality of maps
is poor as during initialization. Thus if entropy H exceeds
the threshold ΘH , but the position distance between the

visual proto objects with maximum and second maximum
probability (P̂common) is small, audio-motor maps can be
updated nonetheless. The uncertainty of an adaptation step
can be described by the following equation:

H ′ = H ·∆X(VjMax,VjSecMax), (6)

where VjMax and VjSecMax stand for the visual proto-objects
with maximal and second maximal probability respectively.
If uncertainty H ′ is below threshold ΘH ′ or H < ΘH , a
confidence factor c is set to 1 and the map is adapted.
Otherwise c = 0 and the map is not updated in the current
step. The threshold ΘH ′ depends on the standard deviation
δAV (ΘH ′ = 2 · δAV ), since the system has a high tolerance
for the visual position difference when the quality of audio-
motor maps is poor. The matched visual position pv is then
converted to a position evidence vector, which can be defined
by a delta function δp,pv .
The audio-motor map is updated by:

M(p, l, f ,n, t) = M(p, l, f ,n, t−1)−F(p) ·
(M(p, l, f ,n, t−1)−C(l, f ,n)), (7)

where p, l, f and n stand for position, cue index, frequency
channel and node, respectively. Learning parameter F(p) is
given by:

F(p) = c ·β ·δp,pv , (8)

where c and β represent the confidence of the matching
process and the fixed adaptation rate respectively. In our
experiment β = 0.2.

IV. RESULTS

Our approach was tested in real world scenarios. Offline-
calibrated maps were used as reference. Our approach was
compared with a heuristic method in scenarios where addi-
tional persons dynamically entered and vacated the room.

A. Offline-calibrated audio-motor maps as reference
In the experiment we firstly calibrated audio-motor maps

offline und used them as reference for performance estima-
tion. A loudspeaker was placed in front of the robot (0◦), at a
distance of 1m away and at the same height as the robot head.
The head changed its orientation ph every 10◦ from −90◦ to
90◦, so that the azimuth (−ph) changed correspondingly in
robot-centered coordinates. At each position, 47 sound files
were played and mean population responses of IID and ITD
were measured. The whole offline calibration required more
than 2 hours.

The performance of online-adapted audio-motor maps can
be then estimated by comparison with offline-calibrated maps
using normalized Euclidean distance:

d(M,M′) =

√√√√∑
p

∑
l

∑
f

∑
n
(M(p, l, f ,n)−M′(p, l, f ,n))2

K
, (9)

where M and M′ represent online-adapted and offline-
calibrated maps respectively. K is the total number of ele-
ments in an audio-motor map and satisfies K = kp ·kl ·k f ·kn,
where kp = 19, kl = 2, k f = 100 and kn = 19 is the number of
positions, cues, frequency channels and nodes, respectively.



Fig. 5. Euclidean distance between offline-calibrated and online-adapted
maps over time

Fig. 6. Online-adapted IID maps for several azimuth angles and in different
adaptation steps. Offline-calibrated maps are used as reference.

B. Basic online scenario

In the online scenario we simulated a speaker with a
loudspeaker on which a picture of a face was attached. The
loudspeaker was placed on the same position as in offline
calibration. During online adaptation, the robot head oriented
itself to a random horizontal angle in the range [−90,90]
after an update step was finished. The acquisition of auditory
and visual signals was interrupted during head movement,
so that audio-motor maps were only adapted in still status.
At the beginning maps are initialized with random numbers
in the range [−0.5,0.5] using a uniform distribution. The
normalized Euclidean distance over time between online-
adapted and offline-calibrated maps is illustrated in Fig. 5.
Fig. 6 shows online-adapted IID maps on several positions
(0◦, 30◦, −30◦ and −90◦) and in different update steps (10th,
100th and 500th step), as well as offline-calibrated maps on
the corresponding positions. Every 100 update steps of our
approach need about 7 minutes. The plot in Fig. 5 shows that
a good similarity is achieved after about 400 steps, which
takes about 30 minutes, while offline calibration requires
more than 2 hours.

C. Natural communication

Our approach was tested in three scenarios where ad-
ditional persons (N > 1) dynamically entered and vacated
the scene. The results were then compared with a heuristic
method which considers the last seen face as the matched
visual position to the current sound source. If more than
one face appears in the camera image, the heuristic method
randomly chooses one. The heuristic method is similar to
methods in [8], [9] for linking auditory and visual informa-
tion. The three scenarios and the corresponding results are

Fig. 7. Scenario 1: one additional person entered the room in the 70th
adaptation step and vacated in the 170th adaptation step. He entered then
in the 480th step and vacated in the 580th step again.

described as follows.
The difference between the first scenario and the basic

online scenario in section IV-B is that an additional person
entered the room during the online adaptation in the first
scenario, stood 1m away, faced the robot for a while, did
not speak and then vacated. After some update steps the
person entered the room and vacated again in the same
manner. The only sound source was the loudspeaker at 0◦,
since the additional person did not speak. For this scenario,
CAVSA which computes the association uncertainty with H
in equation (3), CAVSA with consideration of both H and
H ′ in equation (6), the heuristic method and the method
using known sound source position (0◦) as reference are
compared. To simplify the description let us denote these
four methods as “CAVSA 1”, “CAVSA 2”, “Heuristic” and
“Reference”, respectively. As shown in Fig. 7, the quality
of audio-motor maps was still poor between the 70th and
170th adaptation step, when the additional person was in
the room for the first time. “CAVSA 1“ did not update the
maps due to the high entropy H in equation (3). ”Heuristic”
selected sometimes the wrong position for adaptation, but
improved the performance of audio-motor maps to some
degree because the quality of the maps was still poor.
“CAVSA 2“ nearly reached the performance of “Reference”
which used true sound source position. Between the 480th
and 580th step the maps were refined. “CAVSA 1“ and
“CAVSA 2“ were almost not influenced by the additional
person because of their good performance on audiovisual
integration, while the error in “Heuristic” increased due to
using wrong positions.

The only difference between the first and second scenario
is that two additional persons instead of one dynamically
entered the room. Fig. 8 shows the comparison of the
four methods with Euclidean distance to offline-calibrated
maps over time. In comparison to Fig. 7 the four methods
performed similarly except that “Heuristic” got much worse
when two additional persons appeared than in the first
scenario when only one additional person appeared.

In the third scenario the loudspeaker was not used. Instead
two speakers stood 1m away from the robot, faced the
robot and talked to it alternatingly. After some steps one
person vacated the room and only one spoke to the robot.
The adaptation began with an audio-motor map which had
been adapted for 80 steps. Fig. 9 illustrates the comparison



Fig. 8. Scenario 2: two additional persons entered the room in the 80th
adaptation step and vacated in the 190th step. They entered then in the 515th
step and vacated in the 620th step again.

Fig. 9. Scenario 3: from start two speakers talked to the robot alternatingly.
In the 205th step one person vacated the room and only one spoke to the
robot.

of “CAVSA 2” and “Heuristic” up to the 310th adaptation
step. It was shown that “CAVSA 2” performed much better
than “Heuristic” when two speakers talked to the robot
alternatingly.

The results in these three scenarios showed that the adap-
tation process with CAVSA was more robust in situations
where additional persons dynamically entered and vacated
the scene.

V. SUMMARY AND OUTLOOK

We have suggested an approach for Computational Au-
dioVisual Scene Analysis (CAVSA) with a focus on human-
robot interaction in multi-person environments. In CAVSA
the scene is represented with audio and visual proto-objects.
Audio and visual Proto-objects for the same speaker are
then grouped together in their STMs respectively. Finally,
audio and visual proto-objects are matched based on position
information. We have shown that our system can correctly
determine the number and position of speakers in typically
human-robot dialog scenarios. This was demonstrated by
the online adaptation of audio-motor maps. Comparing our
online adaptation of audio-motor maps using CAVSA with
prior online adaptation methods, our approach is more robust
in situations with more than one speaker and when speakers
dynamically enter and leave the scene. Only spatial coinci-
dence is so far used to group audio and visual proto-objects
in their STMs, which fails for instance when a person moves
quickly or several persons stand very close to each other.
Hence we plan to employ more grouping features such as
spectral energies for auditory STM and color or size for
visual STM.
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