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Abstract

We present a developmental model to simulate swimming
digital organisms following an animat’s cell doctrine. Mor-
phology and control are encoded in one genome concurrently
using artificial cells as the basic building blocks for both.
Each individual starts with one cell in the middle of a com-
putational environment, and its development is controlled by
a gene regulatory network. The cells can differentiate into
central pattern generators that control the movements of the
resulting individual. After the developmental process, the in-
dividual is placed into a physics simulation environment and
the distance it swims in a defined time is evaluated. Contrary
to most existing models, one genome for both, morphology
and control is used and the CPGs representing the dynamic
control contribute to the morphology of the organism.

Introduction

Following the work of Matthias Jakob Schleiden on plant
tissues, Theodor Schwann postulated in 1839 that the tissue
of all living organisms is made up of individual cells. At first
this excluded the nervous system, which was later rectified
by the seminal neuro-anatomical work of Ramón y Cajal and
others. This principal concept is known as the cell or the
neuron doctrine of biology.

In biology, the cell doctrine (including the nervous sys-
tem) is an integral part of the evolution, development and op-
eration of all living organisms. The cell as the carrier of the
hereditary information is not just the basic functional unit of
organisms, it is also the basic unit for the evolutionary pro-
cess. Turning this argument around, we can hypothesize that
the direction of the evolutionary process and its diverse re-
sults are a consequence of the cell doctrine. More strongly,
evolution would have not been successful1 without the cell
as its basic unit. We also note that most of the evolutionary
history has been devoted to single cell organisms rather than
to multicellular ones.

1What does it mean, evolution being successful? To circum-
vent a philosophical discussion, we will resort to an artificial life
perspective, equaling success with progress in the criterion chosen
for the process.

In artificial life, biological paradigms are frequently
sought to facility the development of digital organisms or
animats. The purpose of this paper is to outline a model that
allows the simulation of digital organisms based on basic
cell-like units, thus paving the way to an animat’s cell doc-
trine including the nervous system or in more abstract terms
the control system of the animat.

Since the seminal work of Karl Sims (Sims, 1994) the co-
evolution of the morphology (=body) and the control sys-
tems (=brain) of digital organisms has received continuous
attention. In Sim’s work a developmental model using a di-
rected graph has been used for both neural controller and
body plan. The role of the morphology to reach a cer-
tain functionality has also been discussed in robotics. The
passive walker (McGeer, 1990) demonstrated convincingly
how the specific mechanical configuration alone can lead to
a walking behavior that closely resembles the one we ob-
serve in humans without complex control algorithms. How-
ever, not least due to the mechanical difficulties the body
is mainly unchanged in most evolutionary or developmental
robotics approaches. Evolving the developmental steps of
a controller in a static morphology has no justification and
its limitations have been recognized, see e.g. (Pfeifer et al.,
2007). Although some advances have been made using me-
chanical cell blocks to enable a changing morphology, the
mechanical restrictions are still fundamental (Murata and
Kurokawa, 2007; Meng et al., 2011).

In the digital world, we face much fewer restrictions and
it is possible to simulate completely cell based animats, see
e.g. (Schramm et al., 2009). Several computer models for
brain-body co-evolution have been proposed in the litera-
ture, see e.g. (Hornby and Pollack, 2001; Miconi and Chan-
non, 2006; Spector et al., 2007). However, models have ei-
ther been detailed with regard to neural development (Ki-
tano, 1995) or with the development of the morphology (An-
dersen et al., 2009; Eggenberger Hotz et al., 2003). Using a
more abstract representation for the body morphology, Jones
et al. (2011, 2008) analyzed the effects of the body plan on
neural organization using energy constraints. Bongard and
Paul (2000) studied the correlation between morphological



symmetry and locomotive efficiency using a direct encod-
ing. The advantage of being able to evolve a bilaterally sym-
metric body plan or neural controller has been reported in-
dependently in (Mazzapioda et al., 2009; Oros et al., 2009).
Bongard (2003) uses a gene regulatory model to develop lo-
comoting animats or animats that should grow to touch an
object.

A number of computational models have been developed
to model biological gene regulatory networks (see e.g. the
review of de Jong (2002)). Artificial embryogeny simu-
lates biological cellular growth and pattern formation start-
ing with one single cell (Andersen et al., 2009; Eggenberger
Hotz et al., 2003; Harding and Banzhaf, 2008; Joachimczak
and Wròbel, 2009; Doursat, 2009; Kowaliw et al., 2004).
Steiner et al. (2008) evolved the structure and the parame-
ters of a gene regulatory network for growing 3D cellular
structures that are mechanically stable and lightweight. The
model was refined in (Steiner et al., 2009) using cell polar-
ization to represent more complex inner structures. Stan-
ley and Miikkulainen (2003) develop a taxonomy for artifi-
cial embryogeny based on cell fate, targeting, heterochrony,
canalization, and complexification.

In this contribution, we implement an animat’s cell doc-
trine by representing the whole body or morphology of the
digital organism by cells some of which perform the control
of the animat’s behavior. Therefore, the nervous system is
an integral part of the morphology and the neurons are ba-
sic cells that differentiate during embryogeny assuming their
specific neural functionality. Therefore, the system evolves
the shape and the control of animats concurrently. Further-
more, the representations of shape and control are not sepa-
rated, instead morphology and control are phenotypic char-
acteristics of the artificial organisms that are the result of
a common gene regulatory network that organizes the cel-
lular growth of the animat. Indeed the separation between
morphology and control becomes arbitrary even on the phe-
notypic level, because the cells that control the behavior also
contribute to the morphology of the animat. This straightfor-
wardly results from using artificial cells as the basic struc-
tural as well as functional components of our animat.

For the simulation of the cellular neural control we use
central pattern generators (CPGs) which represent a higher
level of abstraction compared to the spiking neural system
employed in (Jin et al., 2008). CPGs facilitate the evolution
of an oscillating movement, which makes it easier for the
evolutionary process to develop the swimming behavior.

In the next section, we introduce CPGs in general and the
specific CPG model used in this paper in greater detail. The
following section is devoted to a description of our model of
gene regulatory networks (GRNs) and how it is used to rep-
resent cellular growth. Thereafter, the physics simulation
and the experiments are described followed by a discussion
of the results. In the last section, the main findings of the pa-
per are summarized and an outlook into future experiments

u

v

Figure 1: The model of a central pattern generator contains
two neurons that interact with each other.

Table 1: Properties of the CPG Model

k ω ρ λ σ
0.01 0.3 1 1 1

is presented.

Central Pattern Generators (CPGs)

Many animals use coupled rhythmic muscle activations for
movements. This movement is not controlled by the brain,
but by coupled oscillators, the central pattern generators
(CPG). It can be shown, that the pattern occurs also after
the spinal cord has been separated from the brain (Murray,
2008).

Several models of CPGs exist, e.g. (Murray, 2008; Ijspeert
and Kodjabachian, 1999; Verdaasdonk et al., 2006; Chung
and Slotine, 2010; Beer, 2009), in general the CPG consists
of two neurons which interact with each other, see Figure 1.
The difficulty with most models is the stability of the output
of many CPGs depending on their connections. The output
of the CPGs should ideally be sinusoidal with phase shifts
between the output signals of the different CPGs depending
on their synapse connections and weights. Each CPG oscil-
lates, they synchronize with other CPGs using their connec-
tions, so no global clock is used.

Chung and Slotine (2010) use coupled Hopf-Kuramoto
oscillators and show their ability to synchronize almost glob-
ally. This model is used for the experiments presented in the
following because of its good ability to synchronize. There-
fore, xi(t) = (ui(t), vi(t))

T and the following equations
are used:

ẋi = f(xi; ρi)− k

mi
∑

j∈Ni

(

xi −
ρi
ρj

R (φij)xj

)

(1)

and

f(x; ρ) =

(

−λ/ρ2
(

u2 + v2 − ρ2σ
)

u− ω(t)v
ω(t)u− λ/ρ2

(

u2 + v2 − ρ2σ
)

v

)

. (2)

The properties of the model for the simulations in this paper
are described in Table 1.



Figure 2: An example chromosome for the development.
The first gene (gene 0) starts at the first RU of the genome.
Each SU-RU changeover defines a boundary between two
genes.

A Computational Model for the Development
of Morphology and Control

The morphological development simulated in this work is
under the control of a gene regulatory network (GRN) and
physical cellular interactions. The morphological develop-
ment starts with a single cell put in the center of a two-
dimensional computational area of size100× 80. Each cell
can die or divide. The cells are not fixed on a grid and un-
derlie physical interactions, i.e. overlapping cells pusheach
other away and cells that do not overlap attract each other
with decreasing forces with larger distances.

The GRN is defined by a set of genes, each consisting
of a number of regulatory units (RUs) and structural units
(SUs). SUs define cellular behaviors, such as cell division,
cell death or the production of transcription factors (TFs)for
intra- and inter-cellular interactions. Whether the SUs of a
gene are expressed is determined by the activity level of the
RUs of the gene, refer to Fig. 2. Note that a single or multi-
ple RUs may regulate the expression of a single or multiple
SUs and that RUs can be activating(RU+) or repressive
(RU−). The activation level of RUs is influenced by the
TFs that can “bind” to the RU. If the difference between the
affinity values of a TF and a RU is smaller than a predefined
thresholdǫ (in this work ǫ is set to0.2), the TF can bind to
the RU to regulate the gene activation. The affinity values
are encoded in the RUs and the SUs that produce a TF and
are, as well as all values in the genome, limited to an inter-
val of [0, 1]. The affinity similarity (γi,j) between thei-th
TF andj-th RU is defined by:

γi,j = max
(

ǫ−
∣

∣affTFi − affRUj
∣

∣ , 0
)

. (3)

If γi,j is greater than zero, then the concentrationci of the
i-th TF is checked whether it is above a thresholdϑj defined
in thej-th RU:

bi,j =

{

max(ci − ϑj , 0) if γi,j > 0

0 otherwise
. (4)

Thus, the activation level contributed by thej-th RU (de-

noted byaj , j = 1, ..., N ) can be calculated as follows:

aj =
M
∑

i=1

bi,j , (5)

whereM is the number of TFs that bind to thej-th RU.
Assume thek-th gene is regulated byN RUs, the expression
level of the gene can be defined by

α = g(c), (6)

gk(c) = 100
N
∑

j=1

ljaj(2sj − 1), sj ∈ (0, 1). (7)

2sj −1 denotes the sign (positive for activating and negative
for repressive) of thej-th RU andlj is a parameter repre-
senting the strength of thej-th RU. If αk > 0, then thek-th
gene is activated (δk = 1) and its corresponding behaviors
coded in the SUs are performed.

An SU that produces a TF (SUTF) also encodes all param-
eters related to the TF, such as the affinity value, the decay
rateDc

i , the diffusion rateDf
i , as well as the amount of the

TFi to be produced. Which TFi is produced is defined in
terms of the affinity value.

A = h(α),

hi(αk) =

{

β
(

2
1+e−20·f·αk

− 1
)

if αk > 0

0 otherwise
, (8)

wheref andβ are both encoded in the SUTF.
A TF produced by an SU can be partly internal and partly

external. To determine how much of a produced TF is ex-
ternal, a percentage (pext ∈ (0, 1)) is also encoded in the
corresponding gene. Thus,∆cext

i = pext · Ai is the amount
of external TF to be produced and∆cint

i = (1− pext) · Ai is
that of the internal TF.

External TFs are put on four grid points around the center
of the cell, which undergo first a diffusion and then a decay
process. Note, that the external TFs are computed on a grid
but the positions of the cells are continuous and therefore not
limited to this grid. The internal TFs underlie only a decay
process. All internal and external concentrations of TFs are
limited to an interval of[0, 1].

Figure 3 shows a block diagram of the main components
of a GRN in one cell, describing the cell dynamics. The cell
dynamics can become coupled through external transcrip-
tion factors, which underlie a diffusion and decay process
and are position dependent. The number of TFs involved in
gene regulation of the cellular behaviors is defined by the
genome and the parameters in the resulting GRN as well.
The number of cells also changes during development, start-
ing with one single cell and two external TFs. The maximum
number of cells is limited to 700 cells for reducing compu-
tational cost. From a control system point of view, the de-
velopmental system is composed of a changing number of
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Figure 3: Block diagram of the model of a single cell.

nonlinear dynamical sub-systems with a changing number
of system states, and the dynamics of the sub-systems are
strongly coupled with each other.

In our experiments, we put two prediffused, external TFs
without decay and diffusion in the computation area. The
first TF has a constant gradient in thex-direction and the
second iny-direction.

The SU for cell division (SUdiv) encodes the angle of di-
vision, indicating where the daughter cell is placed. A cell
with an activated SU for cell death (SUdie) dies at the devel-
opmental timestep it is activated. When both cell death and
cell division are active at the same developmental step, only
cell death is performed.

A cell with an active SU for neuron formation (SUneuron)
becomes a CPG for the rest of its lifetime. All cells on the
outside of the individual that are not CPGs at the end of
the development are termed muscle cells. The threshold for
whether thei-th CPG is to be connected to thej-th CPG is
calculated as follows:

ϕij =
c1

1 + ec2·(dij−10c3)
, (9)

wheredij is the distance between thei-th andj-th neuron
andc1, c2 andc3 are encoded in the SUneuron. Then, a ran-
dom numberp (p ∼ N (0, 1)) is generated, and ifp < ϕij , a
connection between the two CPGs will be generated.

There is one additional SU for other possible actions,
which are not used in this work. As a result, it can hap-
pen that some genes perform no action, that is one cause of
redundancy.

The muscle cells contract with the output of one of the
neurons of the closest CPG. When the distance to the closest
CPG is higher than8, the muscle cell is passive. A contrac-

Figure 4: Illustration of a body plan consisting of cells con-
nected by springs. The CPGs are depicted in green. The
springs on the outside of the body (red) are able to change
their natural length, except the springs associated to a CPG.

tion of a muscle cell means a change in the rest length of the
associated spring at the outside of the individual (counter-
clockwise).

Since each CPG contains two neurons (u andv), an ori-
entation of the CPG is introduced to define to which neuron
a cell is connected. The orientation of the CPG itself is de-
fined by the gradient of a TF, which TF is used is defined
in the SU for neuron formation. Parameters4 in the SU de-
fines an affinity value, the TF with the closest affinity to the
affinity encoded ins4 is used for the orientation of the CPG.
Cells which connect to the CPG on its first0−180◦ are con-
nected to the neuronu and cells connected with an angle of
180− 360◦ are connected to the neuronv of the CPG.

Physics Simulation
The physics simulation engine used to simulate the behavior
of the animats is BREVE2

A simple model for simulating the effects of water forces
is added, which has also been adopted in (Sfakiotakis and
Tsakiris, 2006). In this model, the water forces for different

2see www.spiderland.org/



Table 2: Constants for the mechanical simulation environ-
ment

Mass of cellsm 0.5
Radius of cellsr 0.5
Damping constantd 1
Spring strengthc 5
Normal natural length of springsln 2
Short natural length of springsls 1.2
Minimal periodic timeTmin 10
Maximal periodic timeTmax 400
Simulation lengthtsim 500.0

elementsi (sphere of thei-th cell) are computed as follows:

F i = F i
T + F i

N , (10)

F i
T = −λT · sgn(vi

T ) · (v
i
T )

2, (11)

F i
N = −λN · sgn(vi

N ) · (vi
N )2, (12)

whereλT andλN are the drag coefficients for each direc-
tion. λ depends on the effective area, a shape coefficient
of the element and the fluid density.vi

T andvi
N are the

velocities of elementi in normal and tangential direction.
λT = 0.001 andλN = 2.5 are used in this work. The wa-
ter forces are computed for cells in the outside of the body
plan. The normal and tangential vectors of the body parts
(i-th sphere) can be calculated by:

ti =
pi−1 − pi+1

|pi−1 − pi+1|
, (13)

ni =

(

0 −1
1 0

)

· ti, (14)

wherepi is the position vector of thei-th cell andpi−1 and
pi+1 are the positions of the neighboring cells on the outside
of the morphology.

vi
N = ni · vi, (15)

vi
T = ti · vi, (16)

wherevi is the velocity of thei-th cell.

Experiments
The goal of the experiments is to evolve individuals that
swim the furthest in a desired time. The fitness function for
swimming is defined as follows:

fswim = −

∣

∣

∣

∣

∣

(

n
∑

i=0

xi(t = 0)

)

−

(

n
∑

i=0

xi(tend)

)∣

∣

∣

∣

∣

, (17)

so the center of mass of the individual at the beginning and
the end of the swimming period are computed and the dis-
tance is calculated.

Table 3: Properties of the evolutionary optimization

µ 45
λ 300
Elitists 3
initial # RUs and SUs 50, 50
σ 10−4

pdup, ptrans, pdel 0.05, 0.03, 0.02
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Figure 5: Fitness curves to evolve swimming individuals,
their movements are controlled by CPGs.

The size of the individuals is limited, so the number of
cells (nc) is constrained between10 and500. A penalty of
600 − nc will be applied ifnc < 10 and a penalty ofnc if
nc > 500. If the cells in the developed morphology are not
fully connected, a poor fitness of100 will be assigned.

When the individual consists only of neurons or has no
neurons, there will be no movement and the fitness for swim-
ming is therefore set to zero (fitswim = 0). If the CPGs are
not connected, which means there is no path to another CPG
via synapses, the CPGs cannot synchronize and their phase
shift is random and therefore depends on the initial values of
the differential equation. To avoid that not connected CPGs
get established during the evolution, but still not to penalize
it too strong, the fitness for swimming is then halved.

The EA setup is defined in Table 3, four different runs
with different random seeds have been performed.

Results
The fitness curves of the four different runs are shown in
Figure 5. The resulting individuals all swim between 53 and
82 length units (53.9, 82.3, 53.5, 62.2). Run 2 is analyzed
in more detail in the following section.

Analysis of Run 2

The fitness curve and the morphologies of some individuals
from run 2 are shown in Figure 6. An elongated shape de-
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Figure 6: Fitness curve of run 2. The morphologies of
the best individuals of generation90, 200, 400 and999 are
drawn.
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t=90 t=95 t=101

Figure 9: Tail fin of the best individual of run 2. Blue cells
are CPGs, all other cells are black.

velops quickly (generation 90), and subsequently the shape
smoothens in later generations. The number of the CPGs
also increases and their positions change.

Figure 7 shows the development of the best individual of
run 2, while Figure 8 shows its swimming behavior. Most
cells first divide, transform to a CPG and die afterwards.
Because of the neurons on one side of the individual, the
springs on this side do not change their natural length and
the movement of the individual is only caused by the springs
on the other side of the individual. At the end of the indi-
vidual a triangle forms which has the appearance and seems
to fulfill the function of a tail fin, as shown in Figure 9. It is
also interesting that the resulting individual is unsymmetric,
contrary to the results of Jones et al. (2008) that show the
advantage of symmetric morphologies.

The output of the CPGs are plotted in Figure 10, which
shows that the phase shifts between the different CPGs are
small. Figure 11 shows the orientations of the CPGs and we
can see that some CPGs are turned around which results in
a larger phase shift for the muscle cells.
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(b) Phase shifts between the sinus curves of the dif-
ferent neurons relative to u6.

Figure 10: Output of all CPGs from the best individual of
run 2.

Summary and Outlook

In this paper, we have proposed a model that follows an ani-
mat’s cell doctrine, i.e., an evolved gene regulatory network
controls the cellular growth of a digital organism whose be-
havioral control is realized by some of the cells differenti-
ating into central pattern generator cells representing neu-
rons. Therefore, morphology and control of the animat are
not merely co-evolved but co-represented by one regulatory
system whose parameters are optimized during the evolu-
tionary search process. Both on the genotypic and on the
phenotypic level the distinction between morphology and
control merely becomes descriptive.

The evolutionary optimization of the gene regulatory net-
work resulted in a simple animat that is capable to per-
form swimming behavior by plausible movement. Body
cells that differentiated into central pattern generatorspro-
vide the ability to obtain an oscillating pattern with only a
few neurons without limiting the connections or requiring
long learning phases. In some cases the evolved morphology
includes structures resembling tail fins, which seem to ease
the functional or behavioral task. In principle, this is similar
to the example of the passive walker that we mentioned in
the introduction, where the dynamic control is eased by the
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Figure 7: The development of the best individual of run 2 at the end of the evolution. Blue cells will divide in the next timestep,
red cells transform to a CPG and will die in the next timestep.
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Figure 8: Swimming behavior of the best individual of run 2. Blue cells are CPGs, all other cells are black.
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Figure 11: Orientation of the CPGs of the best individual of
run 2. Since some CPGs are turned around, some muscle
cells are connected tou and some tov, which causes the
large phase shifts between the contractions of the springs.

morphology of the organism.

Compared to the work of Jones et al. (2011, 2008), which
is based on a more abstract representation which is less bi-
ologically inspired, the evolved organisms do not exhibit
symmetric morphologies. It would be interesting to find out
under which constraints symmetry would also evolve in our
framework.

The target of this research has been to demonstrate that
the evolution of organisms exhibiting simple but meaning-
ful behavior based on an animat’s cell doctrine is possible.
Finding the right parametrization of the gene regulatory net-
work to develop a suitable morphology that incorporates the
adjusted neural control is not a trivial task. At the same time,
it is now necessary to analyze the properties of our model in
more detail. First steps have been made in Figure 6 where
we have observed the evolutionary path of the morphology
for one run and in Figure 10 where we have analyzed how



the control is organized with the central pattern generator
neurons. One of the next steps would be to relate the evolu-
tion of morphology to the evolution of the dynamics of the
CPGs and how both are over time represented in the gene
regulatory network. Unfortunately, even for digital evolu-
tion, the functional analysis of gene regulatory networks is
a rather complex tasks, although promising first results have
been obtained for evolving cellular morphologies, see e.g.
Schramm et al. (2010).
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(2009). Evolution of bilateral symmetry in agents controlled
by spiking neural networks. InIEEE Symposium on Artificial
Life, pages 116–123.

Pfeifer, R., Lungarella, M., and Iida, F. (2007). Self-organization,
embodiment, and biologically inspired robotics.Science,
318(5853):1088–1093.

Schramm, L., Jin, Y., and Sendhoff, B. (2009). Emerged coupling
of motor control and morphological development in evolution
of multi-cellular animats. InProc. of the ECAL 2009.

Schramm, L., Martins, V. V., Jin, Y., and Sendhoff, B. (2010).
Analysis of gene regulatory network motifs in evolutionary
development of multicellular organisms. InProc. of the ALife
XII, pages 133–140.

Sfakiotakis, M. and Tsakiris, D. P. (2006). Simuun: A simulation
environment for undulatory locomotion.International Jour-
nal of Modelling and Simulation, 26(4):350–358.

Sims, K. (1994). Evolving virtual creatures. InProceedings SIG-
GRAPH, pages 15–22.

Spector, L., Klein, J., and Feinstein, M. (2007). Division blocks
and the open-ended evolution of development, form, and be-
havior. InProceedings of GECCO, pages 316–323.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artifi-
cial embryogeny.Artificial Life, 9(2):93–130.

Steiner, T., Jin, Y., and Sendhoff, B. (2008). A cellular model for
the evolutionary development of lightweight material with an
inner structure. InProc. of the GECCO’08, pages 851–858.

Steiner, T., Trommler, J., Brenn, M., Jin, Y., and Sendhoff, B.
(2009). Global shape with morphogen gradients and motile
polarized cells. InProceedings of the 2009 Congress on Evo-
lutionary Computation, pages 2225–2232.

Verdaasdonk, B. W., Koopman, B. F. J. M., and Helm, F. C. V. D.
(2006). Energy efficient and robust rhythmic limb movement
by central pattern generators.Neural Networks, 19(4):388–
400.


