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Abstract—Evolutionary dynamic optimization has been draw-
ing more and more research attention, and yet most work in
this area is focused on Tracking Moving Optimum (TMO),
which is to optimize the current fitness function at any time
point. Recently, we proposed a more practical way to solve
dynamic optimization problems, which is referred to as Robust
Optimization Over Time (ROOT). In ROOT, we are trying to
find solutions whose performances are acceptable over more
than one environmental state, i.e., fitness functions. Before any
development of benchmarks or algorithms for ROOT, it is
necessary to have some understanding of what aspects of an
environment can change and more importantly how these changes
influence the solving of ROOT problems. In this paper, we develop
a number of measures which can be used to characterize and
analyse the underlying changing environment in the framework
of ROOT. We test these measures on several benchmark problem
instances, and it is shown that these measures are able to
differentiate different dynamics effectively and provide useful
information about what kind of algorithms might or might not
suit certain dynamic environments.

I. I NTRODUCTION

Most research in evolutionary dynamic optimization has
been focusing on Tracking Moving Optimum (TMO), which
is to optimize the current fitness function at any time point
[1], [2], [3], [4]. However, in [5], we pointed out a probably
more practical way to solve dynamic optimization problems,
the corresponding methodology of which is referred to as
Robust Optimization Over Time (ROOT). Consider a dynamic
optimization problem, whose fitness function changes over
time with stationary periods between two successive changes,
i.e., the dynamic optimization problem can be represented as
a sequence of fitness functions(F1, F2, ..., FN ) during the
investigated time interval[t0, tend). For TMO approaches, the
goal is to find an optimal solution for each fitness function
resulting a sequence of solutions(X1,X2, ...,XN ), while in
ROOT we are aiming to find solutions whose performances
are satisfactory over more than one fitness function. In other
words, the resulting solution sequence(X ′

1,X
′

2, ...,X
′

L) with
L ≤ N in ROOT may have solutions which can be used
for two or more successive fitness functions with solutions’
performances subject to certain constraints. For instance,
suppose solutionX ′

1 is used in the first two environmental
states when the corresponding fitness functions areF1 andF2

respectively, and we determine the solutionX ′

1 before the first

environmental state changes into the second one. Solutions
in ROOT whose performances are desirable for two or more
successive environmental states are termedrobust solutions
over time. For the sake of simplicity, we employ the matrix
U to denote which fitness functions a solution is used for.
The element inU is either 1 or 0 with Uij = 1 meaning
the ith solution is used for thejth fitness function. Since we
solve dynamic optimization problems in an on-line manner,
whenever we start to optimize thejth fitness function we
check whether the solution used for(j − 1)th fitness function
is satisfying in thejth environmental state. If so, we do not
need to provide any new solution for thejth fitness function.
To make the objective clearer in ROOT, based on the notations
mentioned above, we formulate the single objective ROOT
problem as follows:

Min L = |S|, S = (X ′

1,X
′

2, ...,X
′

L).

S.t.∀ i& j, |
Fj(X

′

i) − optj

optj
| ≤ δapp, if Uij = 1,

∀ i&m, Uim =

{

1, if bi ≤ m ≤ ei

0, otherwise
,

∀ k, bk+1 = ek + 1, b1 = 1, eL = N,

1 ≤ i ≤ L, 1 ≤ j ≤ N, 1 ≤ k ≤ L − 1,

(1)

where L is the cardinality of solution sequenceS, and
optj is the optimal solution’s fitness in thejth environmental
state.δapp is the parameter which constrains the performances
of solutions in their used environmental states.bi and ei

denote respectively the indices of the first and last fitness
functions solutionX ′

i is used for. It is noted that this problem
definition requires the information of optimal solutions ineach
environmental state.

As argued in [6] and [7], the nature of environmental
changes is crucial to the understanding and solving dynamic
optimization problems. Therefore, a number of measures were
proposed in [6] and [7] respectively, both of which can be used
to determine what aspects of the underlying fitness landscapes
change and more importantly what kind of TMO algorithms
might be appropriate for the investigated problems. In our



case, the underlying environmental change is also able to
influence enormously the design of proper algorithms for
ROOT problems due to the following reasons:

• If the environmental change is too ‘severe’, there might
not exist anyrobust solution over timeat all considering
the setting ofδapp. As a result, the concept of ROOT
makes no sense.

• It may happen that in some changing environments opti-
mal solutions in previous environmental states tend to
have good performances in later environmental states.
In such dynamic environments, optimizing the current
fitness function tends to have the same effect as finding
robust solutions over time. Therefore, existing TMO
approaches may succeed in solving ROOT problems, and
there is no need to develop additional methods for ROOT
problems.

• If the dynamic of environmental changes exhibits the
pattern that the fitness changes of solutions tend to
be stable across successive environmental changes, this
information then can be exploited so that the search
for robust solutions over timecan be focused in some
particular regions of solution space.

The aim of this paper thus is to characterize and analyse
environmental changes for the purpose of solving ROOT prob-
lems using the notion of fitness landscape [8]. Accordingly,we
propose a set of measures which can be used to understand
what aspects of fitness landscapes change due to underlying
environmental changes. For each measure, we discuss its
implications for what properties those ROOT problems with
certain measure values may have and what kind of methods
might or might not be appropriate for solving such ROOT
problems.

The remainder of the paper is structured as follows. We
review some related work in Section II, which is about
measuring and characterising environmental changes for the
purpose of TMO. In Section III, a set of measures are proposed
to analyse and characterize environmental changes when the
objective for dynamic optimization is ROOT rather than TMO.
Experimental studies are reported in Section IV to show
whether these measures are able to differentiate environments
with different dynamics and more importantly to provide
some hints as to what kind of algorithms might or might
not be appropriate for certain dynamic environments. Finally,
conclusions and future work are discussed in Section V.

II. RELATED WORK

Previous studies on classifying dynamic environments
mainly serve to inspire the design of artificial dynamic opti-
mization benchmark problems without necessarily quantifying
those characteristics. Besides, all the work were carried out in
the objective of TMO. De Jong [9] identified four main cat-
egories of dynamic optimization problems. The first category
involves problems in which the optimal solution moves slightly
and gradually due to environmental changes. The second
category consists of problems where previous locally optimal
solutions become optimal in new environments. In the third

category, problems exhibit a cyclic pattern where the optimal
solutions in the future return to one of those optimal solutions
in the past, while in the fourth category problems undergo
severe and abrupt environmental changes. In [6], Weicker in-
troduced a mathematical framework to describe and categorize
dynamic fitness functions. Within the framework, a dynamic
fitness function consists of several static fitness functions, each
of which dynamic rules (coordinate transformations and fitness
rescalings) are given to. Based on the dynamic rules, several
dynamic problem properties were discussed, and four severity
measures were proposed. It was then showed experimentally,
using a(1, λ) Evolution Strategy for an abstract problem, that
for dynamic optimization problems with different severities the
proper algorithmic techniques and population sizes can vary
significantly. Additionally, Branke [10] used the following four
criteria to characterize changing environments:frequency of
change, severity of change, predictability of changeandcycle
length with accuracy. The frequency of changemeasures how
often a environment changes, which is often calculated using
the number of fitness evaluations between two consecutive
changes. The distance from the new optimum to the old
one is often used as a measurement ofseverity of change.
The predictability of changedepends on whether the change
follows a pattern or is completely random. If after a period
of time, the environment returns to a previous state, then the
measure ofcycle length with accuracyis employed to quantify
how long does it take and how accurate it returns to a former
state.

Not until recently, Branke [7] proposed to develop a number
of measures which serve to characterize and analyse the nature
of changes of any dynamic optimization problem. In other
words, given an artificial or real-world dynamic optimization
problem, these measures are used to tell what aspects of fitness
landscape change due to underlying environmental changes,
and more importantly what kind of algorithms might be appro-
priate for dynamic optimization problems with such dynamics.
These measures includeseverity of change, fitness correlation,
fitness change correlationand usefulness of previous good
solutions. The distance between the optimum before the envi-
ronmental change and the optimum after the change is used to
measure theseverity of change. In cases where the optimum
is impossible to determine, theseverity of changeis calculated
using estimated optimum. As Branke said in [7], if theseverity
of changeis low which means the new optimum is not far away
from the old one, approaches which generate diversity through
mutation after environmental change, like hypermutation [11],
would have a good performance. Otherwise, such methods
would definitely fail. Thefitness correlationcalculates the
correlation coefficient of fitnesses or rankings of samples in
the solution space before and after an environmental change.
If the value of the measure is high which means previous
good solutions tend to remain good in the future, memory
mechanisms like [12] storing previous good solutions may
improve the solving of the current fitness function. Thefitness
change correlationlooks at correlation coefficient between
fitness changes of similar points in search space. The high



value of the measure simply means similar points undergo
similar fitness changes and vice versa. Finally, the usefulness
of good solutions found in previous environmental states, e.g.,
the bestk local optimum in each environmental state, as the
start points for local search in following environmental states
are examined using the measure ofusefulness of previous good
solutions.

There are also some theoretical research on analysis of
fitness landscapes for static optimization problems [13] and
investigations on how dynamics of changing fitness landscapes
influence the evolution process of evolutionary algorithms
[14], [15].

III. C HARACTERIZING ENVIRONMENTAL CHANGES FOR

ROOT

In this section, we propose a number of measures which can
be used to characterize the nature of environmental changes
specially for the solving of dynamic optimization problems
under the concept of ROOT. Within these measures, different
aspects of environmental changes are quantified. What is
more, we discuss some implications of those measures for
whether existing TMO methods would succeed or what kind
of algorithms might be successful in solving ROOT problems
with certain characteristics.

Most of the measures require a large number of samples
taken from solution space. To improve estimation accuracy,
we employ stratified sampling as Branke did in [7]. In cases
where correlation coefficient is calculated, we use the equation
RXY =

P

n
i=1

(xi−x)(yi−y)

(n−1)σxσy
, wherexi and yi (i = 1, 2, ..., n)

are samples of two random variablesX and Y respectively,
with the corresponding sample meansx and y, and sample
standard deviationsσx andσy. When we talk about distance
between solutions, we simply mean Euclidean distance since
real-valued representations are employed in the experiment
in Section IV. Besides, in cases where Local Hill Climbing
(LHC) technique is required, we use steepest ascent climbing
(maximization problem is considered in this paper) with the
fixed step size equalling1

5 of the search range in each
dimension.

A. Optimum Degradation

Since our objective in ROOT is findingrobust solutions over
time for dynamic optimization problems, a natural question
would be whether existing TMO approaches would suffice for
the task. The answer to the question is very much related to
how optimum from previous particularly last environmental
states performs in later environmental states. Therefore,we
propose the measure ofoptimum degradationto quantify that
performance. The measure is calculated using the current
fitness of a previous optimumFc(X

∗

p ), 1 ≤ p ≤ c, and

the current optimal solution’s fitnessoptc: |
Fc(X

∗

p )−optc

optc
|. The

higher the value of this measure is, the worse the previous
optimum performs in the current environmental state, and
the worse TMO approaches might perform in findingrobust
solutions over time.

B. Estimated Optimum Degradation

As we can see, the calculation ofoptimum degradation
requires the information of optimum in each environmental
state, which is often impossible to have in many real-world
problems. Therefore, it would be helpful to have a measure
to estimate theoptimum degradationwithout knowing the
exact optimum. The measure here is calledestimated optimum
degradation, for which we use the equation ofoptimum degra-
dationbut replace the true optimum with the solution obtained
by conducting LHC on the best sample in corresponding
environmental states.

C. Optimum Survival Length

The measure ofoptimum degradationdoes not really esti-
mate how long a previous optimum can be used for. Given
a value ofδapp, we are more interested in how many con-
secutive environmental states the performance of a previous
optimum remains satisfactory. A solutionX ′ survives in the
ith environmental state if and only if it satisfies the equation
|Fi(X

′)−opti

opti
| ≤ δapp. The number of successive environmental

states a previous optimum survives is returned as the measure
of optimum survival length. Clearly, the larger this measure is,
the shorter the resulting solution sequence will be if a TMO
approach is employed for the ROOT problem.

D. Estimated Optimum Survival Length

Like the measure ofoptimum degradation, the measure
of optimum survival lengthalso requires the knowing of
optimum in each environmental state. In situations where
the information about optimum is not available, we use the
measure ofestimated optimum survival length. The calculation
of estimated optimum survival lengthis the same asoptimum
survival lengthexcept that the solution obtained by conducting
LHC on the best sample is used as the replacement of real
optimum in corresponding environmental states.

E. Survival Rate

While the above mentioned measures look at optimal so-
lutions only, these might not be exact estimations of cor-
responding characteristics since often TMO approaches are
not able to find optimal solutions but good and near optimal
ones. Therefore, we propose to draw a set of good samples
to estimate how many proportion of good solutions in last
environmental state remain to be good in the next environ-
mental state by the measure ofsurvival rate. Given a value
of δapp, this measure is calculated first by drawing a number
of samples before an environmental change. The best fitness
of these samples is identified asfbest and all samples which
have a fitness no smaller thanfbest ∗ (1 − δapp) form the set
Aδapp

. Then we identify the best fitness of newly generated
samples asf ′

best after the environmental change. Finally, the
measure ofsurvival rate is returned as the ratio of solutions
in Aδapp

, which have fitness better thanf ′

best ∗ (1 − δapp)
after the environmental change. The measure ofsurvival rate
is important in that it gives a general estimation of whether
or how ‘many’ robust solutions over timeexist in a changing
environment.



F. Fitness Correlation

This measure investigates the correlation coefficient of
fitnesses of samples before and after an environmental change.
If the correlation coefficient is high, this means good solutions
in the current environment will remain to be good in the
next environment, and TMO approaches would still be a good
choice for ROOT problems. However, the real difficulty for
ROOT will be how to select, from those good solutions, a
particular one which will survive for the most consecutive
environmental states.

G. Fitness Change Correlation Over Time

In this measure, we look at the correlation coefficient of
fitness changes from two successive environmental changes
for the same sample set. If the measure is high, then the
solutions’ fitness in search space tends to undergo similar
changes over time. In other words, in such dynamics, if a
solution’s fitness decreases due to one environmental change,
it is very likely that the solution’s fitness would keep going
down in following environmental changes. The information
about this measure is important in the sense that based on
the measure we could focus our search in some particular
regions over others. For instance, if we obtain several locally
optimal solutions in different regions of search space, we
would prefer the one whose performance will become better
in the next environmental state, according to the prediction on
the measure.

H. Fitness Change Correlation of Similar Points

In order to calculate the measure offitness change cor-
relation over time, some solutions need to be re-evaluated
every time the environment changes. However, whether these
solutions’ fitness changes could represent those of similar(in
terms of distance in solution space) solutions largely depends
on whether the fitness landscape changes coherently. By co-
herence, we look into fitness changes of similar solutions. We
calculate the measure offitness change correlation of similar
points as follows. We first obtain the fitness changes ofn

samples. After this, for each of thesen generated samples, we
pick a random point with distanced away as its neighbour.
Finally, we return the correlation coefficient of fitness changes
between thesen samples and their corresponding neighbour
points.

It might be worth noting that the set of measures proposed
here are probably the most important ones for characterizing
and analysing environmental changes in ROOT problems,
but they may not be complete. Other measures could exist,
which would help to understand the environmental dynamics
in ROOT.

IV. EXPERIMENTAL STUDY

In this section, we first review the modified moving peaks
benchmark proposed in [5]. Then we briefly discuss the
influence of settings of some benchmark parameters on the
underlying ROOT problems. Based on the discussion, we
suggest three problem instances of the modified moving peaks

benchmark, which are used as the test bed for the proposed
measures in Section III. Finally, we report the calculated
measures on these three problem instances and explain their
meanings respectively.

A. Modified Moving Peaks Benchmark

The modified moving peaks benchmark is derived from
Branke’s moving peaks benchmark [16] by allowing each
peak having its own change severities. Basically, the modified
moving peaks benchmark consists of several peak functions
whose height, width and center position change over time,
which can be described as:

Ft( ~X) =
i=m
max
i=1

{Hi(t) − Wi(t) ∗ || ~X − ~Ci(t)||2}, (2)

whereHi(t), Wi(t) and ~Ci(t) denote the height, width and
center of theith peak function, ~X is the design variable,
and m is the total number of peaks. Besides, the timert is
usually denoted as the index of environmental state.Hi(t),
Wi(t) and ~Ci(t) change simultaneously after a certain period
of time∆e which is usually measured by the number of fitness
evaluations:

Hi(t + 1) = Hi(t) + height severityi ∗ N(0, 1),

Wi(t + 1) = Wi(t) + width severityi ∗ N(0, 1),

~Ci(t + 1) = ~Ci(t) + ~vi(t + 1),

~vi(t + 1) =
si ∗ ((1 − λ) ∗ ~r + λ ∗ ~vi(t))

‖ (1 − λ) ∗ ~r + λ ∗ ~vi(t) ‖
. (3)

N(0,1) means a random number drawn from the Gaussian
distribution with zero mean and variance one. Each peak’s
height Hi(t) and width Wi(t) vary according to its own
height severityi andwidth severityi respectively. The cen-
ter ~Ci(t) is moved by a vector~vi of a lengthsi in a random
direction (λ = 0) or a direction exhibiting a trend (λ > 0).
The random vector~r is created by drawing random numbers
in [−0.5, 0.5] for each dimension and normalizing its length
to si. The complexity of this benchmark can be varied by
changing the number of peaks and the number of dimensions.

B. Parameter Settings

As we can imagine, different settings of benchmark parame-
ters can result in different dynamics of environmental change,
which would have a big influence on the underlying ROOT
problems. For instance, each peak function changes according
to its own change severities, and if the differences among these
change severities are large, the fitnesses of some solutions
in search space would change much less severely compared
to others. Further, if those slowly or progressively changing
solutions happen to have satisfactory performances according
to the constraints mentioned in Equation 1,robust solutions
over timecan be found among them. On the other hand, if all
peak functions have similar change severities, then it is either
that there would exist norobust solution over timeor that
TMO approaches would suffice to solve ROOT problems. For



TABLE I: Parameter settings of three problem instances from
the modified moving peaks benchmark. The differences among
these problem instances only lie in the setting ofsi.

Number of changes 20
Number of peaks 5

Dimension 2
Search range [0, 50]
Height range [30, 70]
Initial height 50
Width range [1, 12]
Initial width 6

Height severity range [1, 10]
Width severity range [0.1, 1]

[0, 0.5, 1, 1.5, 2.0]: 1st instance
si distribution [0.5, 0.75, 1, 1.25, 1.5]: 2nd instance

[1.5, 1.75, 2, 2.25, 2.5]: 3rd instance
δapp 0.2

the sake of simplicity, we create three problem instances from
the modified moving peaks benchmark by varying only the
setting ofsi parameter, which is used to change the position
of each peak function center. Thesi parameter can influence
the underlying ROOT problem to a large extent in the sense
that it directly changes the position of optimal solutions,the
extent of which depends on the mean and variance ofsi

for all peaks. To be more specific, we decide the distribu-
tions of si (the number of peaks equals to 5) for the three
problem instances as[0, 0.5, 1, 1.5, 2.0], [0.5, 0.75, 1, 1.25, 1.5]
and [2.5, 2.75, 3, 3.25, 3.5]. The rest parameter settings are
all the same for these three problem instances. We have 5
peaks and change the environment 20 times successively. The
search space is[0, 50] for each dimension, and we focus
on the case of two dimensions for each problem instance.
height severityi and width severityi are initialized at the
beginning before any environmental change, drawn randomly
from [1, 10] and [0.1, 1] respectively, and they stay unchanged
through the whole period of time. Besides,height i and
width i are initialized50 and6 respectively, and required to
stay in the interval[30, 70] and [1, 12] respectively during the
20 consecutive environmental changes (if it hits the boundary,
it just bounces back in the opposite direction). The parameter
δapp mentioned in Equation 1 is set to be 0.2. All these
parameter settings are summarized in Table I.

C. Simulation Results

In this section, we calculate the proposed measures for
the three problem instances listed in Table I. The three
problem instances are produced using the same set of random
numbers through the whole time period. If samples need to
be generated, we use 10000 samples in all cases. Besides,
if some measured results are said to be significantly lower
or higher than others, this is based on the0.05 significance
level Wilcoxon rank sum test. Finally, we rerun the calculation
20 times with samples generated differently each time on the
same set of environmental changes, where repeated experi-
ments are desired.

1) Optimum Degradation:The optimum degradationmea-
sures the performance degradation rate of previous optimum

for a particular environmental change. Fig. 1 shows the actual
and estimated optimum degradation rate for each of 20 succes-
sive environmental changes in the three problem instances.The
optimum degradationhere is based on|

Fc(X
∗

c−1
)−optc

optc
|, 2 ≤

c ≤ 21. For the first, second and third problem instances, the
averagedoptimum degradationover 20 environmental changes
are 0.31, 0.22 and 0.65, with the corresponding standard
deviation 0.25, 0.14 and 0.33. As we expect, theoptimum
degradationin the third problem instance is the highest, since
its locations of optimal solutions change the most severely
according to the setting ofsi. For the first two problem
instances, the second one has anoptimum degradationwith
larger standard deviation but the difference between both av-
eragedoptimum degradationis statistically tested insignificant.
Finally, we may conclude that in all problem instances TMO
approaches may perform better in later environmental states
(from the 14th to 20th) than at the beginning for findingrobust
solutions over time, in that theoptimum degradationin later
environmental changes are much lower and most of them are
below 0.2 (δapp = 0.2).

2) Optimum Survival Length:Fig. 2 shows the calculation
of optimum survival length, which tells how long, in terms
of the number of consecutive environmental states, a previous
optimum can survive according to the constraints in Equation
1. Actual and estimated results are presented, and the data
point in each sub-figure in Fig. 2 means how many environ-
mental states a particular optimum can survive. For example,
the point (14, 4) for the actual case in Fig. 2a means the
optimum for the 14th environmental state can also be used in
the 15th, 16th and 17th environmental states considering its
performance. The averagedoptimum survival lengthover 20
environmental states for the three problem instances are 2.60,
1.90 and 1.20, with the corresponding standard deviation 2.16,
1.29 and 0.52. In accordance with the results showed in Fig. 1,
the third problem instance has a significantly loweroptimum
survival lengthcompared to the other two, and the second
problem instance has a larger standard deviation ofoptimum
survival lengththan what the first one has. Finally, we may
conclude that TMO approaches will probably fail in finding
robust solutions over timefor all three problem instances
during the first environmental state to approximately the 13th
environmental state, since hardly anyoptimum survival length
is more than 1 in that period.

3) Survival Rate: While the above mentioned measures
look at how previous optimum performs in later environmental
states, the measuresurvival rateasks generally whether there
exists anyrobust solution over timeand if so, what is the
proportion. We calculate the measure ofsurvival ratefor each
environmental change, and it is showed that approximately
41%, 42% and 14% (averaged over 20 consecutive environ-
mental changes) currently satisfactory solutions continue to be
satisfactory in the next environmental sate. By satisfactoriness,
we mean the solution’s fitness satisfies the constraints in
Equation 1. Taking the data point in Fig. 3a at time6
for example, it means around half satisfactory solutions in
6th environmental state being also satisfactory for the 7th
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Fig. 1: Actual and estimated optimum degradation for 20 successive environmental changes, with one standard deviationerror
bar for estimated cases (averaged over 20 independent runs). Time is the index of environmental change.
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Fig. 2: Actual and estimated optimum survival length for 20 successive environmental states, with one standard deviation error
bar for estimated cases (averaged over 20 independent runs). Time is the index of environmental state.

environmental state. However, when we look at the data point
(6, 1) in Fig. 2a, the optimum at time6 is unsatisfactory at
time 7. This further demonstrates that TMO approaches can
not find robust solution over timein some cases.

4) Fitness Correlation:The fitness correlation coefficient
for each environmental change and fitness correlation coeffi-
cient depending on the time lag, i.e., after several environ-
mental changes, are shown in Fig. 4. The fitness correlation
coefficient for each environmental change in three problem
instances are relatively high, which means good solutions
tend to be good after an environmental change. However,
this does not necessarily mean optimal solutions arerobust
solutions over time, comparing the Fig. 2c and Fig. 4c. As
expected, the fitness correlation coefficient depending on the
time lag deceases as the time lag increases in a general
trend. The fitness correlation coefficient depending on the
time lag is calculated based on the sample’s fitness in the
first environmental state and those in the ith (2 ≤ i ≤ 21)
environmental state.

5) Fitness Change Correlation Over Time:The fitness
change correlation over timemeasures how strongly correlated
a previous fitness change of a sample is to a later fitness

change of that sample. This measure is calculated based on two
consecutive fitness changes, and also on fitness changes with
a time lag between each other. We can see from Fig. 5 that the
fitness change correlation over timebased on two consecutive
fitness changes varies through time for all three problem
instances with the interval[0.81,−0.93], [0.83,−0.94] and
[0.83,−0.88]. The similar phenomenon can also be observed
in the thefitness change correlation over timebased on time
lag. For positivefitness change correlation over time, it means
if a solution’s fitness increased due to a previous environ-
mental change, the solution’s fitness is likely to increase as
well because of later environmental changes, and vice versa.
The information offitness change correlation over timeis
important in the sense that based on this measure we could
tell which part of solution space is going to rise in the future,
and algorithms which can successfully predict solution fitness
change in the future may solve ROOT problems well. For
instance, in the 10th environmental state in Fig. 5a, we could
probably select a good solution whose fitness increased in the
last environmental change as therobust solution over time
when optimizing the fitness function in the 10th environmental
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(c) 3rd problem instance

Fig. 3: Survival rate for 20 successive environmental changes with one standard deviation error bar (averaged over 20
independent runs). Time is the index of environmental change.
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(c) 3rd problem instance

Fig. 4: Fitness correlation coefficient for each environmental change and fitness correlation coefficient depending on time lag
over 20 successive environmental changes with one standarddeviation error bar (averaged over 20 independent runs). Time is
the index of environmental change.

state.
6) Fitness Change Correlation of Similar Points:In prac-

tice, we may not be able to evaluate every solution’s past
fitness, based on which we could predict whether its fitness
will increase or decrease in the future. Instead, we can evaluate
a set of fixed solutions every time the environment changes and
‘predict’ how these solutions’ fitnesses change due to future
environmental changes. Based on the fitness change informa-
tion of these fixed solutions, we could possibly ‘predict’ any
solution’s fitness change in the future according to how similar
the solution is to the fixed solutions. In our study, we measure
the similarity using Euclidean distance between two solutions.
We assume that fitness change correlation decreases with
distance increasing, which is experimentally demonstrated in
Fig. 6. For a larger distance, the correlation turns negative,
e.g., when distance is larger than0.8 in Fig. 6a.

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we extend our previous work on ROOT [5] by
first defining the single objective ROOT problem. Further, we
develop and discuss a set of measures which can be used to

characterize and analyse the underlying environmental change
of dynamic optimization problems for the purpose of ROOT.
We test these measures on several problem instances from the
modified moving peaks benchmark, and show that these mea-
sures allow measurements of various aspects of environmental
change, and most importantly give some inspirations of what
kind of algorithms might or might not suit certain dynamic
optimization problems with the aim being ROOT.

In order to encourage further research on ROOT, a bench-
mark problem specified for ROOT would be valuable. In the
future, we will develop a proper ROOT benchmark problem
which captures different aspects of environmental change
based on the measures proposed in this paper, since exist-
ing dynamic optimization benchmarks are aiming at testing
algorithm’s TMO ability, and in some cases there won’t exist
any robust solution over timeat all. Finally, it would be
very helpful to have some of the measures incorporated into
the design of algorithms for ROOT, for the obvious reason
that if we can ‘predict’ how environment changes, the ROOT
problem would be more tractable.
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(c) 3rd problem instance

Fig. 5: Fitness change correlation coefficient over time foreach environmental change and fitness change correlation coefficient
over time depending on time lag over 20 successive environmental changes with one standard deviation error bar (averaged
over 20 independent runs). Time is the index of environmental change.
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(b) 2nd problem instance
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Fig. 6: Fitness change correlation of similar points for different distances with one standard deviation error bar (averaged over
20 independent runs). Distance is normalized by dividing itby half the search range for each dimension.

ACKNOWLEDGMENT

The authors are grateful to Honda Research Institute Europe
for funding this work. This work was also partially supported
by two National Natural Science Foundation of China grants
(No. 61028009 and No. 61175065).

REFERENCES

[1] Y. Jin and J. Branke, “Evolutionary optimization in uncertain
environments-a survey,”Evolutionary Computation, IEEE Transactions
on, vol. 9, no. 3, pp. 303–317, 2005.

[2] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima
by a particle swarm model using speciation,”Evolutionary Computation,
IEEE Transactions on, vol. 10, no. 4, pp. 440–458, 2006.

[3] X. Yu, K. Tang, T. Chen, and X. Yao, “Empirical analysis of evolu-
tionary algorithms with immigrants schemes for dynamic optimization,”
Memetic Computing, vol. 1, no. 1, pp. 3–24, 2009.

[4] T. Nguyen and X. Yao, “Benchmarking and solving dynamic constrained
problems,” inEvolutionary Computation, 2009. CEC’09. IEEE Congress
on. IEEE, 2009, pp. 690–697.

[5] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time–A
new perspective on dynamic optimization problems,” inEvolutionary
Computation (CEC), 2010 IEEE Congress on. IEEE, 2010, pp. 1–6.

[6] K. Weicker, “An analysis of dynamic severity and population size,” in
Parallel Problem Solving from Nature PPSN VI. Springer, 2000, pp.
159–168.
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