
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

A Life-Long Learning Vector Quantization
Approach for Interactive Learning of Multiple
Categories

Stephan Kirstein, Heiko Wersing, Horst-Michael Groß,
Edgar Körner

2012

Preprint:

This is an accepted article published in Neural Networks. The final
authenticated version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

A Life-Long Learning Vector Quantization Approach for Interactive

Learning of Multiple Categories

Stephan Kirstein1,2, Heiko Wersing1, Horst-Michael Gross2 and Edgar Körner1

1Honda Research Institute Europe GmbH

Carl-Legien-Str. 30, 63073 Offenbach am Main, Germany

2Ilmenau University of Technology

Neuroinformatics and Cognitive Robotics Lab

P.O.B. 100565, 98684 Ilmenau, Germany

Abstract

We present a new method capable of learning multiple categories in an interactive and life-
long learning fashion to approach the “stability-plasticity dilemma”. The problem of incremental
learning of multiple categories is still largely unsolved. This is especially true for the domain of cog-
nitive robotics, requiring real-time and interactive learning. To achieve the life-long learning ability
for a cognitive system, we propose a new learning vector quantization approach combined with a
category-specific feature selection method to allow several metrical “views” on the representation
space of each individual vector quantization node. These category-specific features are incremen-
tally collected during the learning process, so that a balance between the correction of wrong
representations and the stability of acquired knowledge is achieved. We demonstrate our approach
for a difficult visual categorization task, where the learning is applied for several complex-shaped
objects rotated in depth.

1. Introduction

Humans are able to acquire and maintain knowledge during their complete lifetime. This
outstanding ability is called life-long learning (Bagnall, 1990). In contrast to this, artificial neural
networks are typically only adapted during their learning phase and their weights, representing
the learned knowledge, are fixed afterwards. Such a static learning architecture can be powerful in
constrained and stationary environmental settings but may not be suitable for technical applications
like assistive robots or interactive agents. This is because these systems require a continuous error
correction and need to enlarge their knowledge base to operate in changing and unpredictable
environments.

Our target is to propose a novel categorization approach that enables interactive and life-long
learning in high-dimensional sensory feature spaces. This enforces particular requirements on the
learning architecture: The assumption of an unpredictably changing learning environment forces
the learning system to self-adapt its representation parameters. Scalability to a large number of
categories requires efficient memory usage. Learning in direct interaction with humans needs real-
time update of the stored category representations. And finally the ability of learning multiple
categories at the same time provides a great advantage for an efficient and natural human training
dialog with the learning system (the isolated training of single categories induces an explosion of
individual category exemplars that must be shown).

The fundamental problem of life-long learning with artificial neural networks is the so-called
“stability-plasticity dilemma”. Here the term plasticity refers to the ability of a learning system
to incorporate new acquired knowledge into its internal representation. Plasticity can be achieved

Preprint submitted to Elsevier December 15, 2011

with incremental neural networks like the growing neural gas (Fritzke, 1995). For this architecture
the training process starts with a minimal network size and iteratively increases the network size
based on an insertion criterion. The final network dimensionality then reflects the complexity of the
current learning task. However, already learned knowledge should also be preserved to guarantee
the stability of previously learned information, posing the largely unsolved stability problem. This
challenge occurs if a network model is trained with a limited and changing training ensemble for
life-long learning tasks, making it infeasible to store all experiences during the complete operation
time of the system. Therefore in this paper we are particularly interested in incremental learning
of representations under the condition, where a particular training vector can only be accessed for
a limited time period. As a consequence the training with such a changing data ensemble typically
causes the well-known “catastrophic forgetting effect” (French, 1999): With the incorporation of
newly acquired knowledge, the previously learned knowledge is quickly fading out. Closely related
to this effect is the term “catastrophic interference” (McCloskey & Cohen, 1989): Patterns of
different categories which are similar in feature space, confuse the learning and overwrite earlier
presented patterns.

The requirements for life-long learning architectures are also dependent on the targeted recogni-
tion task. For identification tasks, where the target is the separation of a specific instance (e.g. one
particular physical object) from all other instances, the combination of incremental learning with
stability considerations of consolidated network parts are typically sufficient (Kirstein et al., 2008).
In contrast to this, for categorization tasks the mapping from several object instances to a shared
attribute (e.g. the basic shape) is required. This means for the example of visual categorization,
where an individual object (e.g. red-white car) typically belongs to several different categories,
a decoupled representation for each category (“red”, “white” and “car”) has to be learned. This
decoupling provides a more efficient representation and a higher generalization performance com-
pared to object identification architectures. It can be achieved using additional metrical adaptation
or feature selection methods. However, due to the fact that exemplars of a category are incremen-
tally presented, considerable changes to the feature weighting and selection can occur. Therefore
for categorization tasks a balance between the stability of knowledge and the correction of wrong
category representations must be found. This balance complicates the learning of such representa-
tions compared to identification tasks. Finally we consider feature weighting and selection methods
without a priori assumptions as advantageous for learning of arbitrary categories.

To satisfy our requirements for life-long learning we combine an exemplar-based neural network
with a category-specific feed-forward feature selection method, where the interactive and life-long
learning of both parts is the major novelty of our proposed method. Although our approach is
applicable for any kind of categories we concentrate in this paper on a challenging visual catego-
rization task of rotated complex-shaped objects. In the following we discuss related work addressing
life-long learning, feature selection, visual categorization and online learning in more detail.

1.1. Life-Long Learning Architectures

One of the first attempts to approach the “stability-plasticity dilemma” led to the development
of the adaptive resonance theory (ART) and especially Fuzzy ARTMAP (Carpenter et al., 1992).
This network architecture is widely accepted but is known to be sensitive to the noise level, to
the presentation order of the training data and to the selection of the vigilance parameter (Polikar
et al., 2001). This parameter controls the maximal size of the hypercubical receptive field of a
single ART node and therefore is crucial with respect to the generalization capability. Furthermore
ART is also unsuited for high-dimensional and sparse feature representations (Kirstein et al., 2008)
that are required for our visual categorization task.

Similarly to the ART network family life-long learning architectures are typically based on
exemplar-based learning techniques like learning vector quantization (LVQ) (Kohonen, 1989) or

2

growing neural gas (GNG) (Fritzke, 1995). Such neural architectures are beneficial for life-long
learning, because for a specific input vector the learning methods modify only small portions of
the overall network. Thus stability can be better achieved compared to the multi-layer percep-
tron (MLP), where all weights are modified at each learning step. Furthermore the learning of
exemplar-based networks is commonly based on some similarity measurements (e.g. Euclidean dis-
tance), where the chosen metric has a strong impact on the generalization performance. To relax
this dependency, metrical adaptation methods can be used that individually weight the different
feature dimensions as proposed for the generalized relevance learning vector quantization (GRLVQ)
(Hammer & Villmann, 2002) algorithm.

A common strategy for life-long learning architectures is the usage of a node specific learning rate
combined with an incremental node insertion rule (Hamker, 2001; Furao & Hasegawa, 2006; Kirstein
et al., 2008). This permits plasticity of newly inserted neurons, while the stability of matured
neurons is preserved. The major drawback of these architectures is the inefficient separation of
co-occurring categories, because typically the complete feature vectors are used to represent the
different classes and no assignment of feature vector parts to different classes is considered.

Other approaches to the “stability-plasticity dilemma” were proposed by Polikar et al. (2001)
and Ozawa et al. (2005). Polikar et al. (2001) proposed the “Learn++” approach that is based
on the boosting (Schapire, 1990) technique. This method combines several weak classifiers to
a so-called strong classifier based on a majority-voting schema, where the weak classifiers are
incrementally added to the network and afterwards are kept fixed. The proposed “Learn++”
can therefore be used for life-long learning tasks, but for more complex learning problems a large
amount of such weak classifiers are required to represent the categories. This makes the method
unsuitable for our desired interactive learning capability. In contrast to this Ozawa et al. (2005)
proposed to store representative input-output pairs into a long-term memory for stabilizing an
incremental learning radial basis function (RBF) network. Additionally it also accounts for a
feature selection mechanism based on incremental principal component analysis, but no class-
specific feature selection is applied to efficiently separate co-occurring categories.

1.2. Feature Selection Methods

In the context of text categorization feature selection methods are a common technique to
enhance the performance (Yang & Pedersen, 1997), while for visual categorization tasks feature
selection gained distinctly less interest. One exception are approaches based on boosting (Viola &
Jones, 2001), where this is an integrated part of the learning method. Category-specific feature
selection is considered to be an important part for our categorization approach. Commonly only
a small subset of extracted features is relevant for a specific category, while the other features are
irrelevant or even can cause confusions. Furthermore small category-specific feature subsets are
beneficial with respect to the computational costs to allow fast interactive learning. Therefore in
the following a brief overview of different feature selection techniques is given.

There are basically three groups of feature selection methods, namely filter, wrapper and em-
bedded methods (Guyon & Elissee, 2003). Filter methods (see Forman (2003) for an overview) are
independent from the used classifier and commonly select a subset of features as a pre-processing
step. The corresponding feature selection is typically based on some feature ranking method (Furey
et al., 2000; Kira & Rendell, 1992), but also the training of single variable classifiers is used. The
second group of feature selection methods are wrapper methods (Kohavi & John, 1997). Similar
to the filter approaches these wrapper methods are independent from the underlying recognition
architecture but they use the learning algorithm as a “black box” to weight different feature subsets
(e.g. based on the training error). Due to the incorporation of the learning method to guide the
feature selection process and to evaluate the different feature subsets, wrapper methods are consid-
ered to select better sets compared to filter methods (Guyon & Elissee, 2003). Wrapper methods

3

furthermore can be categorized into backward and forward selection methods, where the backward
selection starts with a full set of features and iteratively eliminates irrelevant features. In contrast
to this, forward selection methods start with an empty set of features and incrementally add new
features. The major advantage of the backward selection methods is that they can detect combi-
nation features very efficiently. This enables good performance even for less class-specific feature
sets. Although forward selection methods require distinctly more class-specific single features they
are faster and thus preferable for interactive learning tasks. The last group of feature selection
methods are the so called embedded methods. Here the feature selection is an integrated part of
the recognition architecture and is typically optimized together with the network parameters, so
that these methods usually can not be transferred to other learning approaches. One strategy of
this group is to add sparsity constraints to the error function (Perkins et al., 2003), which prune
out irrelevant network connections.

1.3. Visual Category Learning Approaches

In the recent years many architectures dealing with categorization tasks have been proposed
in the computer vision research field. Such category learning approaches can be partitioned into
generative and discriminative models (Fritz, 2008). Generative probabilistic models, as proposed by
Leibe et al. (2004), Fei-Fei et al. (2003), Fergus et al. (2003) or Mikolajczyk et al. (2006), first model
the underlying joint probability P (x, tc) for each category tc and all training examples x individually
and afterwards use the Bayes theorem to calculate the posterior class probability p(tc|x) (Bishop,
2006). The advantages of generative models are that expert knowledge can be incorporated as prior
information and that those models usually require only a few training examples to reach a good
categorization performance. In contrast to this, discriminant models directly learn the mapping
from x to tc based on a decision function Φ(x) or estimate the posterior class probability P (tc|x)
in a single step (Ng & Jordan, 2001). Common approaches for this group of categorization models
are based on support vector machines (Heisele et al., 2001), boosting (Viola & Jones, 2001; Opelt
et al., 2004) or SNOW (Agarwal et al., 2004). Such discriminant models tend to achieve a better
categorization performance compared to generative models if a large ensemble of training examples
is available (Ng & Jordan, 2001).

In general most of these categorization approaches are robust against partial occlusions, scale
changes, and are able to deal with cluttered scenes. However, many models have only been demon-
strated to work with data sets restricted to canonical views of categories. Thomas et al. (2006) try
to overcome this limitation by training several pose-specific implicit shape models (ISM) (Leibe
et al., 2004) for each category. After the training of these ISMs, detected parts from neighboring
pose-dependent ISMs are associated by so-called “activation links”. These links then allow the
detection of categories from many viewpoints. Additionally categorization architectures are com-
monly designed for offline usage only, where the required training time is not important. This makes
them unsuitable for our desired interactive training. Recent work of Fritz et al. (2007) and Fei-Fei
et al. (2007) addresses this issue by proposing incremental clustering methods, which in general
allow interactive category learning, but still these approaches are restricted to the canonical views
of the categories.

1.4. Online and Interactive Learning

The development of online and interactive learning systems has become increasingly popular in
the recent years (Roth et al., 2006; Steels & Kaplan, 2001; Arsenio, 2004; Wersing et al., 2007).
Most of these methods were not applied to categorization tasks, because their learning methods
are unsuitable for a more abstract and variable category representation. The work of Skočaj et al.
(2007) is of particular interest with respect to online and interactive learning of categories. It en-
ables learning of several simple color and shape categories by selecting a single feature that describes

4

the particular category most consistently. Finally the corresponding category is then represented
by the mean and variance of this selected feature (Skočaj et al., 2007) or more recently by an incre-
mental kernel density estimation using mixtures of Gaussians (Skočaj et al., 2008). Although this
architecture shares some common targets with our proposed learning method, the restriction to a
single feature only allows the representation of categories with little appearance changes. This is
basically because more complex categories typically require several features to adequately represent
all category instances. To avoid this limitation we propose a forward feature selection process that
incrementally selects an arbitrary number of features if they are required for the representation of
a particular category.

The manuscript is structured as follows: in Section 2 we introduce our category learning ar-
chitecture that enables interactive and life-long learning of arbitrary categories. Afterwards we
describe the feature extraction methods used to extract shape and color features in Section 3. In
Section 4 we show the application of our proposed learning method to a visual categorization task.
Finally we discuss the results and related work in Section 5 and give the pseudocode notation of
our category learning method in Section A.

2. Incremental and Life-Long Learning of Categories

Our memory architecture is based on an exemplar-based incremental learning network combined
with a forward feature selection method to allow life-long learning of arbitrary categories. Both
parts are optimized together to find a balance between insertion of features and allocation of rep-
resentation nodes, while using as little resources as possible. This is crucial for interactive learning
with respect to the required computational costs. In the following we refer to this architecture as
category learning vector quantization (cLVQ).

To achieve the interactive and incremental learning capability the exemplar-based network part
of the cLVQ method is used to approach the ”stability-plasticity dilemma” of life-long learning
problems. Commonly for LVQ networks the number of nodes for each class has to be predefined.
Thus experiments normally are repeated with different numbers of nodes to find a network size
adequate for the difficulty of the corresponding learning problem. Such a repetition of experiments
is unsuitable for interactive learning. Thus we define a node insertion rule that automatically
determines the number of required nodes. The final number of allocated nodes corresponds to the
difficulty of the different categories itself, but also to the within-category variance. Finally the
long-term stability of these incrementally learned representation nodes is considered as proposed
by Kirstein et al. (2008).

Additionally for our learning approach a category-specific forward feature selection method is
used to enable the separation of co-occurring categories, because it defines category-specific metrical
“views” on the nodes of the exemplar-based network. During the learning process it selects low-
dimensional subsets of category-specific features by predominantly choosing features that occur
almost exclusively for a certain category. Furthermore only these selected category-specific features
are used to decide whether a particular category is present or not. This enables computational
efficiency and interactive learning, which especially for high-dimensional data is typically difficult
to achieve. For guiding this selection process a feature scoring value hcf is calculated for each
category c and feature f . This scoring value is only based on previously seen exemplars of a certain
category, which can strongly change if further information is encountered. Therefore a continuous
update of the hcf values is required to follow this change.

2.1. Distance Computation and Learning Rule

The learning in the cLVQ architecture is based on a set of high-dimensional and sparse feature
vectors xi = (xi

1, . . . , x
i
F), where F denotes the total number of features. We define the changing

5

Low−dimensional
subspace

Category 1

cLVQ Nodes wK

Low−dimensional
subspace

Category C

Low−dimensional
subspace

Category C−1kmin(C)w

wkmin(2)

kmin(1)w

xiTraining vector
Negative representative

Positive representative

Decision Boundary

...Training vector

t t t t
−1 0 −1

Low−dimensional

Category 2

subspace...xi

iiii
CC−121

Label vector ti:

...
...

+1

Figure 1: Illustration of the cLVQ Learning Rule. Based on a training vector xi and the corresponding target
vector ti the winning nodes wkmin(c) are calculated for each category c independently. For this calculation only
the selected features f ∈ Sc are used, so that the categorization decision is based on the different low-dimensional
feature subsets. If the categorization decision was correct the winning node wkmin(c) is shifted into the direction of
the training vector. Otherwise wkmin(c) is moved in the opposite direction. If for an xi the membership of a category
is unknown (ti

c
= 0) no adaptation of the prototype node wkmin(c) is performed.

training set T as a subset of all available vector indices i. Additionally each vector xi is assigned
to a list of category labels ti = {ti1, . . . , t

i
C}. We use C to denote the current number of represented

categories, where each tic ∈ {−1, 0,+1} labels an xi as positive or negative example of category
c. The third state tc = 0 is interpreted as unknown category membership, which means that all
vectors xi with tic = 0 have no influence on the representation of category c.

The cLVQ representative vectors wk with k = 1, . . . , K are built up incrementally, where K
denotes the current number of allocated vectors w. Each wk is attached to a label vector uk, where
uk
c ∈ {−1, 0,+1} is the model target output for category c, representing positive, negative, and

missing label output, respectively. Each cLVQ node wk can therefore represent several categories c.
For the category-specific distance computation dc we use a weighted Euclidean distance with spe-
cific weight factors λcf related to the generalized relevance learning vector quantization (GRLVQ)
method proposed by Hammer & Villmann (2002):

dc(x
i,wk) =

F
∑

f=1

λcf (x
i
f − wk

f)
2, (1)

where the category-specific weights λcf are updated continuously. We denote the set of selected
features for an active category c ∈ C as Sc. We choose λcf = 0 for all f 6∈ Sc, and otherwise adjust
it according to a scoring procedure explained later. The winning nodes wkmin(c)(xi) are calculated
independently for each category c. Let Ac = {k|uk

c 6= 0} be the set of indices of representatives
that represent category c. If Ac = ∅, since no representative is yet available for this category, or

6

tic = 0 no weight adaptation is done. Otherwise we compute:

kmin(c) = arg min
k∈Ac

dc(x
i,wk). (2)

Each wkmin(c)(xi) is updated based on the standard LVQ learning rule (Kohonen, 1989), but is
restricted to feature dimensions f ∈ Sc:

w
kmin(c)
f := w

kmin(c)
f + µΘkmin(c)(xi

f − w
kmin(c)
f) ∀f ∈ Sc, (3)

where µ = 1 if the categorization decision for xi was correct, otherwise µ = −1 and the winning node
wkmin(c) will be shifted away from xi. This node adaptation is illustrated in Fig. 1. Additionally
Θkmin(c) is the node-dependent learning rate as proposed by Kirstein et al. (2008):

Θkmin(c) = Θ0 exp

(

−
akmin(c)

γ

)

. (4)

Here Θ0 is a predefined initial value, γ is a fixed scaling factor, and ak is an iteration-dependent
age factor. The age factor ak is incremented every time when the corresponding wk becomes the
winning node.

2.2. Feature Scoring and Category Initialization

The incremental category learning of our model is organized in training epochs, where only a
limited number of category entries (e.g. object views) are visible to the learning method, emulating
a limited short-term memory (STM). After each epoch some of the training vectors xi and their
corresponding target category values ti are removed and replaced by vectors of a new instance to
test the life-long learning capability of the cLVQ method. Therefore for each training epoch the
scoring values hcf , used for guiding the feature selection process, are updated in the following way:

hcf =
Hcf

Hcf + H̄cf

. (5)

The variablesHcf and H̄cf are the number of previously seen positive and negative training examples
of category c, where the corresponding feature f was active (xf > 0). For each newly inserted object
view, each counter value Hcf is updated in the following way:

Hcf := Hcf + 1 if xi
f > 0 and tic = +1, (6)

and H̄cf is updated as follows:

H̄cf := H̄cf + 1 if xi
f > 0 and tic = −1. (7)

The score hcf defines the metrical weighting in the cLVQ representation space. We then choose
λcf = hcf for all f ∈ Sc and λcf = 0 otherwise.

Finally if category c with the category label tic = +1 occurred for the first time in the current
training epoch, we initialize this category c with a single feature and one cLVQ node. We select
the feature vc = argmaxf (hcf) with the largest scoring value and initialize Sc = {vc}. Among all
training vectors the one xi ∈ T is selected as the initial cLVQ node, where the selected feature vc
has the highest activation, i.e. wK+1 = xq with xq

vc
≥ xi

vc
for all i. The attached label vector is

chosen as uK+1
c = +1 and zero for all other categories.

7

until errors solved
or no features left

as new node

del feature

new feature
select and add

keep feature
keep nodedel node

select erroneous vector

gain > gain <=

gain <= gain >

11

22

occured − start learning
errors for category call errors solved for

category c − stop learning

Figure 2: Illustration of the cLVQ Optimization Loop. The basic idea is to change the representation based
on the current category errors on the available training set T . This means that all representational changes are
only based on the limited and changing set of training vectors of the actual epoch. If the gain in categorization
performance based on all available training examples of category c is above the insertion threshold, the modification
is kept and otherwise it is retracted.

2.3. Learning Dynamics

During a single learning epoch of the cLVQ method an optimization loop is performed iteratively
(see Fig. 2). This loop applies small changes to the representation of erroneous categories by testing
new features and nodes. A single optimization loop is composed of the following steps:

Step 1: Feature Testing. The target of this step is the addition of a single feature for the
category-specific metric of each erroneous category, based on the observable training vectors xi and
the corresponding categorization errors E+

c and E−
c . Additionally in rare cases also the removal of

already selected features is possible. With respect to the learning speed the order of the feature
testing is crucial. Therefore we calculate the ranking order for this testing based on the scoring
values hcf and combine them with the feature occurrences in the categorization errors. Taking both
measurements into account results into a fast resolvement of categorization errors, while adding
only very few category-specific features. For each category c we determine the set of positive errors
E+

c as:
E+

c = {i ∈ T |tic = +1 ∧ tic 6= ukmin(c)
c (xi)} (8)

and negative errors E−
c as:

E−
c = {i ∈ T |tic = −1 ∧ tic 6= ukmin(c)

c (xi)}. (9)

Afterwards we compare the total number of positive errors #E+
c with the corresponding number

of negative ones #E−
c . If the total number of #E+

c ≥ #E−
c then we compute:

e+cf =
∑

i∈E+
c

Φ(xi
f)/

∑

i∈E+
c

1, (10)

8

Negative representativePositive representative

...

Low−dimensional
subspace

Low−dimensional
subspace

Low−dimensional
subspace

Low−dimensional
subspace

Category 1 Category 2 Category C−1 Category C

2

1
4

2

1

3

14

Decision Boundary
wrongly categorized vector xi

Figure 3: Illustration of the Node Insertion Rule. We incrementally add new cLVQ prototype nodes wk based
on wrongly categorized training vectors. Thus for each erroneous category at least one new node is inserted. For the
insertion we prefer such training vectors (small circles) where the most categorization errors occurred. Due to the
different selected features for each category one feature vector is located at different positions in the corresponding
low-dimensional subspace. Therefore numbers are assigned to the training vectors to show the match for the different
categories. For the illustrated example only one training vector (highlighted with the small filled circle) causes errors
in three different categories. Therefore at the corresponding vector position a new node is inserted. This insertion
rule leads to a compact representation, because a single node wk potentially improves the representation of several
categories.

where Φ is a Heaviside function.
The score e+cf is the ratio of active feature entries for feature f among the positive training

errors of class c. We now want to add a feature to the category feature set Sc that potentially
improves the category performance c by having a high scoring value hcf and also is very active for
the encountered error set E+

c . Therefore we choose vc in the following way:

vc = argmax
f 6∈Sc

(e+cf + hcf) (11)

and add Sc := Sc ∪ {vc}. The added feature dimension modifies the cLVQ metrics by changing the
decision boundaries of all Voronoi clusters assigned to category c, which potentially reduces the
remaining categorization errors. Now the change of the categorization error is calculated based on
the newly added feature vc. If the performance increase for category c is larger than a threshold
ǫ1, then vc is permanently added and otherwise it is removed. An analog step is performed if the
number of negative errors is larger than the number of positive errors (#E+

c < #E−
c). The only

difference is that a feature f ∈ Sc is removed and then again the performance gain is computed for
the final decision on the removal.

Step 2: cLVQ Node Testing. Similarly to Step 1, we test new cLVQ nodes only for erroneous
categories. In previous work nodes were inserted for training vectors with smallest distance to wrong
winning nodes (Kirstein et al., 2008). In contrast to this, we here insert new cLVQ nodes based on
training vectors xi with most categorization errors tic 6= ukmin(c)

c (xi) for all categories C, until for
each erroneous category c at least one new node is inserted (see Fig. 3). This leads to very compact
representations, because a single node typically improves the representation of several categories.

Again we calculate the performance increase based on all currently available training vectors.
If this increase for category c is above the threshold ǫ2, we make no modifications to the cLVQ
node labels of the corresponding newly inserted nodes. Otherwise we set the corresponding labels
uk
c of each newly inserted node wk to zero, so that node k does not further contribute to the

representation of category c. Finally we remove nodes where all uk
c are zero, which means that no

9

erroneous category for which the node wk was originally inserted reached a performance gain above
ǫ2.

Step 3: Stop condition. If all remaining categorization errors are resolved or all possible
features f of erroneous categories c are tested, then we start a new training epoch. Otherwise we
iterate the optimization Steps 1 and 2 to test further features and nodes.

2.4. Insertion Thresholds

Similar to the a priori definition of the optimal number of LVQ nodes also the insertion thresh-
olds ǫ1 for the feature testing and ǫ2 for the node testing are difficult to predetermine. Large
insertion thresholds minimize the number of allocated resources, but the learning progress is slow,
which is unsuitable for our desired interactive learning capability. Additionally the learning ap-
proach may even fail to learn an appropriate representation for more difficult categories due to the
fact that no feature candidate or node reaches the insertion threshold and therefore all of them are
rejected. On the other hand, small insertion thresholds considerably increase the learning speed,
because it is typically much easier to resolve small numbers of errors iteratively, but the amount of
allocated network resources is much higher. Especially for the feature selection process this has the
effect that also many irrelevant or object-specific features are selected, so that the generalization
performance to new category instances is poor.

As a compromise between these two extremes we propose to start each learning epoch with
high insertion thresholds ǫ1 and ǫ2 so that predominantly category-specific resources are allocated.
During each iteration of the optimization loop illustrated in Fig. 2 a decrement of both thresholds
is calculated in the following way:

∆ǫ =
α(ǫmax − ǫmin)

F
(12)

to gradually relax the insertion constraint, where F corresponds to the total number of extracted
features and α is a constant that controls the slope of the linear decrement. The final insertion
thresholds of the current learning iteration are calculated in the following way:

ǫ :=

{

ǫ−∆ǫ : if ǫ−∆ǫ > ǫmin

ǫmin : else
. (13)

For the cLVQ architecture this gradual decrement of insertion thresholds has two benefits. At the
beginning of a learning epoch many allocated object-specific network resources are rejected, so that
a compact representation is guaranteed. Additionally the ǫmin is selected in a way to also allow
the representation of categories for which no category-specific features are available. In such rare
cases the categorization performance to new category members is most probably poor, but at least
already known exemplars of such a category can be robustly detected. Furthermore all features
that were first below the insertion threshold ǫ1 are retested, if meanwhile ǫ1 is below the previously
measured performance increase.

3. Feature Extraction

We investigate the learning capabilities of our method based on a visual categorization task.
Three feature extraction methods are used to provide shape and color information as illustrated in
Fig. 4. Although features from different visual modalities are extracted this qualitative separation
of the extracted features is not given to the learning system as a priori information. For our
categorization task we are particularly interested in discovering the structure of the categories from
the high-dimensional but sparse feature vectors by using a flexible metrical adaptation. Assume
you want to learn the category “fire engine”, where all training examples are mainly of red color. If
the learning of this category is restricted to shape features only, it would be difficult to distinguish

10

...

ix

unknown
yes
no
yes

−1

0
1

1
blue
duck

yellow

cup
0.0
0.0

0.0

0.0

0.0

0.3

0.2
0.8

0.5

0.4

Feature Vector

...

Categories ti

Color Histogram

Input Image

Holistic C2 Features

Parts−Based Features

red

bl
ue

green

Figure 4: Feature extraction. Color features are extracted as histogram bins in the RGB space. Shape features
are obtained from parts-based feature detectors and a feed-forward feature extraction hierarchy. Shape and color
features are concatenated into a single “flat” vector representation. The target categories are represented in a
category vector ti for each feature vector xi.

the category “fire engine” from other cars and trucks. This is because the most distinctive feature,
the red color, is not included in the feature representation. Therefore we let the learning algorithm
decide which feature combinations are most suitable to represent a category. As a consequence we
concatenate all extracted features of an object view into a single high-dimensional and structureless
feature vector xi. Despite the fact that the overall dimensionality is high, typically only a subset
of 15-30% of features are activated for any given input , i.e. xi

f > 0 with 1 ≤ f ≤ F .

3.1. Histogram Binning for Color Feature Extraction

For the representation of color information we use the common histogram binning method that
combines robustness against view and scale changes with computational efficiency (Swain & Bal-
lard, 1991). Overall Fco = 6x6x6 = 216 histogram bins within the RGB color space are used, where
typically a small amount of features are specific for a complete color category.

3.2. Hierarchical Feed-Forward Shape Feature Extraction

We use a feed-forward feature extraction architecture inspired by the human ventral visual
pathway (Wersing & Körner, 2003) as one method to extract shape features. This architecture
is based on weight-sharing and a succession of feature detection and pooling stages. The feature
detectors are obtained by unsupervised learning based on invariant sparse coding and provide a
set of general and less category-specific features. Starting point for the feature extracting process
is the input image ji. The first feature-matching layer S1 is composed of four orientation sensitive
Gabor filters zms1(x, y) with m = 1, . . . , 4, which perform a local orientation estimation. To compute

11

the response P̂mi
s1 (x, y) of a simple cell of this layer, responsive to feature type m at position (x, y)

first the input image ji is convolved with a Gabor filter zms1(x, y):

P̂mi
s1 (x, y) = |ji ∗ zms1(x, y)|, (14)

where the ∗ denotes the inner product of two vectors. Additionally a winners-take-most (WTM)
mechanism between features at the same position is performed and a simple threshold function
with a common threshold for all cells in layer S1 is applied. We denote the final output of the
S1 layer at position (x, y) as Pmi

s1 (x, y). The following C1 layer subsamples the S1 output Pmi
s1 by

pooling down to a quarter in each direction (e.g. 64x64 S1 features are pooled down to 16x16 C1
features):

Pmi
c1 (x, y) = tanh (Pmi

s1 ∗ zc1(x, y)), (15)

where zc1(x, y) is a normalized Gaussian pooling kernel with width σc1, identical for all features m,
and tanh is the hyperbolic tangent function.

The S2 layer is sensitive to local combinations of the orientation estimation features extracted
from layer C1. The so-called combination features of this S2 layer (for this experiment 50 different
shape features with n = 1, . . . , 50 are used) are trained with invariant sparse coding (see Wersing
& Körner (2003) for details). The response P̂ ni

s2 (x, y) of one S2 cell is calculated in the following
way:

P̂ ni
s2 (x, y) =

∑

m

Pmi
c1 ∗ znms2 (x, y), (16)

where znms2 (x, y) is the receptive field vector of the S2 cell of feature n at position (x, y), describing
connections to the plane m of the previous C1 cells. Similarly to the S1 layer, a WTM mechanism
and a final threshold function are applied in this S2 layer. The final C2 layer again performs a
spatial integration and reduces the resolution by half in each direction (i.e. 16x16 S2 features are
down-sampled to 8x8 C2 features). For this operation the same pooling mechanism as in layer C1
is used. The final dimensionality of this C2 layer is Fc2 = 50x8x8 = 3200, where the features in
one of the 50 feature maps are topographically organized and a single feature responds to a local
patch in the original segment ji.

3.3. Parts-based Shape Feature Extraction

In contrast to the hierarchical feed-forward feature extraction architecture the parts-based fea-
tures are trained in a supervised manner with respect to category specificity. We combine these
different shape features to show the ability of the category learning method to select appropriate
features out of a large number of possible candidates. Such feature combinations are uncommon
because most categorization methods exclusively rely on parts-features like in the categorization
architectures of Willamowski et al. (2004) or Agarwal et al. (2004).

The parts-based feature detection (see Hasler et al. (2007) for details) is based on a preselected
set of SIFT-descriptors (Lowe, 2004), which are designed to be invariant with regard to rotations
in the image plane. Commonly in categorization frameworks such descriptors are only extracted at
a small number of interest points, detected e.g. by the Harris detector (Harris & Stephens, 1988)
or the Kadir and Brady detector (Kadir & Brady, 2001). These interest point detectors usually
respond to highly textured regions and typically ignore structureless regions. In contrast to this
in the present approach these SIFT descriptors are extracted at any location in the segment ji

allowing for a greater variety of learnable categories, which also includes visually less structured
categories.

For each segment ji the similarity Pmi
a (x, y) (m = 1, . . . , 500) between the stored feature detector

zma and the SIFT-response P̂mi
a (x, y) corresponding to the segment ji at position (x, y) is calculated

using the dot product:
Pmi
a (x, y) = P̂mi

a (x, y) ∗ zma (17)

12

The final response Pmi
a for the feature detector zma and the current segment ji is defined as:

Pmi
a = max

x,y
(Pmi

a (x, y)). (18)

This means that for each feature only the maximum response is used, neglecting all spatial and
configurational information. Such information is commonly included in categorization methods
like in (Leibe et al., 2004), but requires a high amount of representational resources. Neglecting
this information leads to a more compact representation with an efficient reuse and combination of
parts, which enhances the learning speed for interactive category learning tasks. As a final step the
non-sparse feature activations are transformed into a sparse representation, by choosing for each
segment ji only 10% of the features with highest detector responses.

4. Experimental Results

In the following section our proposed cLVQ life-long learning architecture is compared with a
single layer perceptron (SLP), an incremental support vector machine (SVM) (Martinetz et al.,
2009) and two modified cLVQ versions cGRLVQ and cLVQ∗. The comparison of the exemplar-
based networks is done to measure the effect of the proposed feature weighting, and feature selection
method with respect to the categorization performance, number of allocated resources and required
training time. For this comparison the cLVQ∗ is the most simplified exemplar-based network that is
closest to the original LVQ proposed by Kohonen (1989). The only modification is the incremental
adding and testing of new prototype nodes, but compared to cLVQ no feature weighting and
selection is performed. In contrast to this, the cGRLVQ additionally applies a feature weighting
based on the GRLVQ method proposed by Hammer & Villmann (2002). The GRLVQ weighting
is based on the distance dcorrc to the nearest correctly labeled prototype wkcorr(c) and dincorrc to the
nearest prototype wkincorr(c) with incorrect label:

∆λcf = ΘλΦ′
G

(

dcorrc

dcorrc + dincorrc

(xi
f − wincorr

f)2 −
dincorrc

dcorrc + dincorrc

(xi
f − wcorr

f)2
)

, (19)

where Θλ is the learning rate for the λcf weighting values and Φ′
G is the first derivative of a Fermi-

function. Similar to the proposed cLVQ this dynamical feature weighting enables the cGRLVQ to
suppress irrelevant features but no explicit feature selection is performed.

The comparison with the SLP network architecture is done because this is the simplest neural
network model that fulfills the requirements of the categorization task. Therefore SLPs are used to
measure the baseline performance. For each category one output node is used. The output outslpc

of each node is defined as:

outslpc (xi) =
1

1 + exp(−w
slp
c ∗ xi − βc)

, (20)

wherewslp
c is a single linearly separating weight vector with bias βc for each category c. The training

is based on standard stochastic gradient descent in the sum of quadratic difference errors between
training target and model output. In contrast to the more commonly used receiver operating
characteristics (ROC) curves we estimate the rejection thresholds during the learning process,
based on the average activation strength of the network output. This is necessary for interactive
learning tasks to allow categorization of new object views at any time.

Finally our proposed cLVQ method is compared to the established support vector machine
(SVM) approach (Cortes & Vapnik, 1995). We expect that the categorization performance of
our cLVQ ranges in between the simple SLP and SVM. Nevertheless with the focus on interac-
tive learning the memory consumption and learning speed are as important as the categorization

13

performance. For the SVM comparison we used the SoftDoubleMaxMinOver approach proposed
by Martinetz et al. (2009) because of its ability of incremental learning and its computationally
efficient learning procedure.

Although we use the standard SoftDoubleMaxMinOver approach (Martinetz et al., 2009) for
our SVM experiments, we use it in an unusual way. The most common usage of SVMs is that all
training and test data is collected a-priori. This has the advantage that the optimal kernel function
and parameters can be determined with a grid search and all different parameter sets are evaluated
according to their generalization performance. It is obvious that such a grid search is infeasible for
fast and interactive learning. Therefore we decided to use linear kernels and a hard margin criterion
with C = 106 for all SVM experiments. Nevertheless in a pre-study we also tested RBF kernels, but
the simple linear kernels achieved a comparable performance and in contrast to the RBF kernels
the results are much less affected by the exact choice of the parametrization. Additionally those
linear kernels required much less training time.

The selected SoftDoubleMaxMinOver method already supports incremental SVM learning, but
so far only increasing sets of feature vectors are considered. In contrast to this we incrementally
add new feature vectors at the beginning of each training epoch, while removing the oldest vectors
from the training set. Furthermore we reinitialize the SVMs at each training epoch with the current
set of support vectors and update them according to the current set of training vectors. Due to
the fact that the selected support vectors conserve the most relevant training information from
previous learning epochs, we do not expect a strong “catastrophic forgetting effect”.

4.1. Experimental Setup

For the comparison of our cLVQ architecture with other learning approaches we use a challenging
categorization database composed of views of 56 different training objects and 56 distinct objects
for testing (see Fig. 5), which were never used during the training phase. For each object 300 color
views of dimensionality 128x128 pixels were taken in front of a black background while rotating
the object around the vertical axis.

Overall our object ensemble contains ten different shape categories and five different color cat-
egories as shown in Fig. 5. It should be mentioned that several objects are multi-colored (e.g. the
cans) where not only the base color should be detected, but also all other prominent colors covering
at least 30% of the visible object view. This multi-detection constraint complicates the catego-
rization task compared to the case where only the best matching category or the best matching
category of a specified group of visual attributes (e.g. one for color and one for shape) must be
detected.

For all experiments performed with this database we trained the different network architectures
with a limited and changing training ensemble T composed of a visible “window” of only three
objects to test the life-long learning ability of the different approaches. For each epoch only these
three out of all 56 training objects (900 training views) are visible to the learning algorithm. At
the beginning of each epoch a randomly selected object is added, while the oldest one is removed.
This scheme is repeated until all training objects are presented once to the network architectures.
Additionally all experiments are repeated ten times with identical parameter set but random order
of object presentation. The corresponding results shown in Fig. 7 and Fig. 8 are the average values
over these runs.

Furthermore we analyzed our training set with respect to the “catastrophic interference effect”.
Therefore the pairwise Euclidean distance of all training vectors, composed of color and parts-
based features, are calculated first. Based on this distance matrix we computed for each category
a histogram of the intra category similarity. This means that the Euclidean distance of all vector
pairs belonging to the same category are considered for such histograms. Additionally we calculated
the inter category similarity. Here all training vector pairs are used, where for one view the

14

Training Objects Test Objects

Rotation Examples

Examples of Multi−Colored Objects

Figure 5: Object Ensemble. Examples of all training (left) and test objects (right) used for our categorization
task, where 15 different categories are trained. As color categories red, green, blue, yellow and white are trained.
The shape categories are animal, bottle, box, brush, can, car, cup, duck, phone, tool. Each object was presented
in front of a black background and is rotated around the vertical axis (bottom), resulting in 300 color images per
object.

15

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

Category Green

Category White

Category Box

Category Animal

Category Blue

Category Brush

Category Red

Category Yellow

Category Bottle

Category Can Category Car Category Cup

Category Duck Category Phone Category Tool

Figure 6: Intra and Inter Category Similarity. Histograms of the pairwise intra (solid lines) and inter category
(dashed lines) similarity of all training vectors, based on the Euclidean distance. If both histograms are strongly
overlapping, at least for approaches based on the Euclidean distance, the learning of those categories gets more
difficult. This overlap is most prominent for the color categories, but also for some of the shape categories the intra
and inter category similarity matches strongly.

16

category is present and for the second view the category is not present. The comparison of intra
and inter category histograms for a particular category indicates how simple this category can be
learned with an Euclidean distance based approach. Typically a stronger match between both
histograms complicates the learning of this category. Additionally in such strong overlapping cases
the occurrence of the “catastrophic interference effect” becomes more prominent.

In Fig 6 it can be seen that especially for the color categories the histograms are almost identical,
while for shape categories the overlap is typically smaller. This high inter category similarity of
the color categories is most probable due to concatenation of shape and color features, where the
amount of different color features in the complete training vector is distinctly less than for the shape
features. Additionally our training set is composed of different colored exemplars of a certain shape
category, where the larger shape feature portion of those training vectors should be quite similar.
This effect can be especially seen in the distinctly higher intra category similarity of most shape
categories.

4.2. Setup of Learning Parameters

For all LVQ-type neural networks we set the node dependent learning rate Θ0 = 0.000055
and a scaling factor γ = 55 (see Eq. 4). Furthermore for the cGRLVQ and cLVQ∗ 35 iterations
are calculated, where during one iteration all training examples are randomly shown once. Both
methods incrementally add a single prototypical node after 75 wrongly categorized training vectors.
For the cGRLVQ the feature weighting learning rate Θλ was set a magnitude smaller than Θ0 as
suggested by Hammer & Villmann (2002). Additionally for a better stability of the cGRLVQ
learning process the incremental insertion of nodes was decoupled from the update of the weighting
values.

In contrast to this for our proposed cLVQ method the allocation of network resources is based
on the dynamically calculated feature insertion threshold ǫ1 ∈ [8; 45], node insertion threshold
ǫ2 ∈ [15; 100] and α = 0.25 value as explained in Section 2.4. Additionally the maximum number
of iterations is set equally to the number of extracted features, but an early stopping is possible if
all training errors are resolved.

For the SVM experiments the learning rate was set to ΘSVM = 0.000055 and the maximum
number of learning steps was set to 257 ∗ 103, which is the default setting of the used toolbox.
For all SVM experiments linear kernels and a hard margin criterion was used. finally for the SLP
experiments the learning rate was set to ΘSLP = 0.00055, while the number of iterations was set
to 100. A higher number of iterations would strongly reduce the training error, but also increases
the “catastrophic forgetting effect” for this kind of neural network.

4.3. Categorization Performance

Although no prior information is given during the learning process with respect to the kind
of trained categories, we distinguish between color and shape categories in the performance mea-
surement to discuss the different quality of extracted features and the corresponding behavior of
all network architectures. We also investigate the effect of different shape features by performing
experiments with parts-based features only or the combination of these features with less category-
specific C2 features.

4.3.1. Color and Parts-based Features

The overall performance of the cLVQ architecture for this feature setting is high for all categories
as can be seen on the left side of Fig. 7. For the color categories it performs much better than the
simpler cGRLVQ and cLVQ∗. Thus for categories with a few stable and category-specific features a
feature selection method and the suppression of irrelevant features is beneficial with respect to the
generalization performance. On the contrary for shape categories the cGRLVQ method performs at

17

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
C

at
eg

or
iz

at
io

n
P

er
fo

rm
an

ce

cLVQ
cGRLVQ
cLVQ*
SLP
SVM

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
a

te
g

o
riz

a
tio

n
 P

e
rf

o
rm

a
n

ce

cLVQ
cGRLVQ
cLVQ*
SLP
SVM

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
at

eg
or

iz
at

io
n

P
er

fo
rm

an
ce

cLVQ
cGRLVQ
cLVQ*
SLP

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
at

eg
or

iz
at

io
n

P
er

fo
rm

an
ce

cLVQ
cGRLVQ
cLVQ*
SLP

Color and Parts−based Features Color, Parts−based and C2 Features
C

ol
or

 C
at

eg
or

ie
s

S
ha

pe
 C

at
eg

or
ie

s

Figure 7: Comparison of Categorization Performance. For this comparison of our proposed cLVQ with cGR-
LVQ, cLVQ∗, SVM, and SLP we performed ten different runs with identical parameter set but random object order.
The categorization performance is calculated after each training epoch, based on all test vectors. This means that the
performance is calculated based on the representation of the objects seen so far, simulating an interactive learning
session. Additionally different feature sets are used to investigate their impact on the categorization performance.
In general cLVQ and SVM are superior for color categories compared to all other learning methods, while for the
shape categories cLVQ is slightly worse than cGRLVQ and cLVQ∗ and distinctly worse than SVM. Although SVM
reaches the highest performance for the combination of color and parts-based features it catastrophically scales with
the addition of high-dimensional and less category-specific C2 features. This means, due to the allocation of many
thousands of support vectors, the SVM approach requires a long training time, making experiments with this setup
impossible.

intermediate training epochs better than cLVQ and cLVQ∗, while at the end of the overall learning
process it is only slightly better compared to cLVQ∗ and cLVQ. This slightly higher performance of
GRLVQ and also cLVQ∗ compared to our cLVQ approach is most probably due to the much higher
number of allocated nodes (see Fig. 8 for details).

The SLP network architecture is distinctly worse for the color categories than the proposed
cLVQ method. For the combination of color and parts-based features the SLP is able to suppress
irrelevant features better than cGRLVQ and cLVQ∗. For the shape categories the SLP network
architecture is only superior at earlier learning epochs, but is worse if the learning process is
continued. Overall the SLP performance is surprisingly good, which is in contrast to classification
tasks with a one-out-of-n class selection, where the SLP approach is known for the “catastrophic
forgetting effect” (French, 1999). For our categorization task this effect is only slightly visible for
the shape categories, where the performance increase for newly presented objects is distinctly less

18

than for all other tested approaches. Finally we compared our cLVQ with the SVM approach,
where SVM reaches a slightly higher performance for the color categories and a distinctly higher
performance for the shape categories. This result confirms that the cLVQ is very powerful in
extracting few stable and category-specific features like for the color categories. In contrast to this
for shape categories with higher appearance variations and distinctly less category-specific single
features (see Fig. 10) it can capture most relevant information, but compared to the SVM results
there is still a potential for improvements of the feature selection process.

4.3.2. Color, Parts-based and C2 Features

We also performed experiments with color histogram features, parts-based features and hier-
archical C2 features. Unfortunately these investigations could not be performed for the SVM,
because of very high memory requirements and an extremely long training time that is caused by
the high feature dimensionality F = 3916. The results of the remaining learning approaches are
depicted at the right side of Fig. 7. It can be seen that the cLVQ method reaches almost the same
performance as in the previous feature setting. In contrast to this the performance of cGRLVQ,
cLVQ∗ and also the SLP is distinctly worse for the color categories compared to the feature set
using only color and parts-based features. Additionally for color categories the SLP is not better
anymore than cGRLVQ, so that the performance difference to cLVQ is nearly 30%. For the shape
categories the cGRLVQ architecture achieves a better performance in comparison to cLVQ even
for the final learning stages. Overall it can be said that for color categories our proposed cLVQ is
unaffected if the general but less category-specific C2 features are added, but these features only
have a minor positive effect on the shape categories. Nevertheless we believe that C2 features can
become beneficial by contributing to the fine tuning of the category representation if the learning
process will be continued.

4.4. Comparison of Required Network Resources

In the following we compare the different learning approaches with respect to the required net-
work resources. In interactive learning tasks the training time is most crucial. For the used vector
quantization approaches cLVQ, cGRLVQ and cLVQ∗ this training time is basically determined by
the overall feature dimensionality and the capability to iteratively solve remaining errors. Further-
more the number of used features and the number of allocated nodes are important for the learning
speed. In contrast to this the training time of the SLP networks mainly depends on the feature
vector dimensionality and the number of preselected iterations per training epoch (100 in our case).
This dependency on the feature dimensionality is also valid for the SVM architecture but addition-
ally also the number of selected support vectors crucially influence the training time. Finally we
are also interested in the scalability of the different approaches with respect to an increasing feature
dimensionality.

The proposed cLVQ method theoretically has the highest computational costs if almost all
feature dimensions were used, because of the iterative insertion and testing of features and nodes.
But effectively it is more than two orders of magnitudes faster compared to cGRLVQ and cLVQ∗

(see Fig. 8). The SVM is slower than our proposed cLVQ but is still much faster than the simplified
LVQ approaches for the combination of color and parts features. Nevertheless it is unfeasible for
the addition of high-dimensional C2 features. This infeasibility is especially due to the acquisition
of 105 high-dimensional support vectors and a required training time that is much longer than the
already very slow cLVQ∗. In comparison with the simple SLP the cLVQ is still more than two times
faster as shown in the upper part of Fig. 8. This computational efficiency is basically caused by
the proposed feature selection method, which typically selects less than 5% of all available feature
dimensions. Also the number of allocated neurons is much smaller compared to the other vector
quantization methods as shown at the bottom of Fig. 8. This is another positive side effect of this

19

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.01

0.1

1

10

100

1000

T
o

ta
l T

ra
in

in
g

 T
im

e
 in

 M
in

u
te

s

cLVQ
cGRLVQ
cLVQ*
SLP
SVM

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

0.01

0.1

1

10

100

1000

10000

1e+05

T
o

ta
l T

ra
in

in
g

 T
im

e
 in

 M
in

u
te

s
cLVQ
cGRLVQ
cLVQ*
SLP

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

10

100

1000

A
llo

ca
te

d
 N

o
d

e
s

cLVQ
cGRLVQ
cLVQ*
SVM

0 4 8 12 16 20 24 28 32 36 40 44 48 52
Learning Epoch

1

10

100

1000

A
llo

ca
te

d
N

od
es

cLVQ
cGRLVQ
cLVQ*

Color and Parts−based Features Color, Parts−based and C2 Features

Figure 8: Comparison of Network Resources. The total training time of the cLVQ, cGRLVQ, cLVQ∗, SVM
and SLP is most crucial with respect to interactive learning shown at the top of this figure for both feature sets. It
can be seen that especially in later learning epochs the simpler vector quantization methods cGRLVQ and cLVQ∗

require more than two orders of magnitudes more training time compared to SLP and cLVQ. The SVM is faster than
cGRLVQ and cLVQ∗ for the experiments with color and parts-based features, but it is intractable for the addition of
high-dimensional C2 features. Finally the cLVQ is even two times faster than the simple SLP. This computational
efficiency of the cLVQ method is caused by the small number of selected features, but also by the smallest amount of
allocated representatives as shown at the bottom of this figure. On the contrary the SVM approach has the highest
memory requirement that is undesirable for life-long learning tasks.

20

small amount of selected category-specific and stable features. The smaller number of nodes again
enhances the learning speed but also is beneficial with respect to the representational capacity for
storing many different categories.

4.5. Qualitative Evaluation of the cLVQ Feature Selection Method

Apart from the categorization performance and network resources we are also interested in how
good the feature selection method of our proposed cLVQ learning algorithm is able to find correct
category-specific features. Therefore ten different training runs of the cLVQ method were performed
and all selected features for each category are saved together with the corresponding feature scoring
values. The selected features for each category c are sorted based on the total number of occurrence
in these ten runs, where frequent features are most probably critical for the representation of this
particular category. Additionally each feature is visualized with a small patch, to allow a visual
inspection of its usefulness for the corresponding category. We use the RGB value of the histogram
bin center for color features, while for the parts-based features the grey-value patch corresponding
to the highest detector activity is chosen. This highest detector activity was calculated based on
the training images used for the selection of the part-based features that do not correspond to the
training and test set used for the category learning shown in Fig. 5. We also consider the final
scoring value hcf of each selected feature. This value is identical for all learning runs and provides
information about the category specificity of this feature. The results of this investigation are
shown in Fig. 9 for three representative color categories and in Fig. 10 for three shape categories.

Due to the fact that the training objects are presented iteratively to the cLVQ, its wrapper
feature selection method can never be perfect. A certain feature at a particular learning state
might be useful, but with more experience it can become obsolete. This especially occurs for
the first object presentation of a shape category, where often a color feature is selected, because
due to the object rotation it is more stable than all shape features. As a consequence features
that are selected only once in Fig. 9 and Fig. 10 are most probably not category-specific and in
many cases unrelated to the most exemplars of the category. But such erroneous features often
also have low scoring values, so that the impact of these features for the category representation is
minimized. Interestingly, the number of features selected once and also their total number positively
correlates with the categorization performance. Therefore both numbers indicate the difficulty of
each category. Furthermore the categorization performance over different runs is more stable if the
set of different selected features is small. In contrast to this a larger number of selected features
which occurred 3-6 times during the different runs, indicate that several redundant feature sets
with roughly the same representational power exist.

It is somehow surprising with respect to the difficulty of categories that the color categories
are not in general easier compared to shape categories. This is especially visible for the category
“white” shown in Fig. 9 and the category “cup” illustrated in Fig. 10. Although in all runs the
correct histogram bin for white was selected, the corresponding scoring value of this feature is quite
low. This small scoring value is most probably caused by reflections on glossy objects, because such
spots typically cause activations of this histogram bin that are independent of the actual color of
the object. Additionally “white” is the only color category for which only few training objects are
completely white but many of them contain smaller fractions of white. Therefore for this category
the separation from other co-occurring shape and color categories becomes more difficult. Finally
it should be mentioned that among the most frequently reoccurring features a considerable amount
have relatively small scoring values, even if some features with higher scoring values are available.
This effect is best visible for the category “animal” in Fig. 10. This can occur if features with
higher scoring values are rarely activated and thus are rejected because the measured performance
gain is below the feature insertion threshold. Additionally it is probable that at least for the
shape categories the combination of several features is important, so that a single feature might be

21

F
e

a
tu

re
 S

co
ri
n

g

9 8 3 2 1

Category Green

6 5 4 3 2 1

Category Red

F
e

a
tu

re
 S

co
ri
n

g

Category White

F
ea

tu
re

 S
co

rin
g

10 6 5 4 3 2 1

F
ea

tu
re

 S
co

rin
g

1

Number of Feature Selections

Number of Feature Selections

Number of Feature Selections

Number of Feature Selections

...

Number of Feature Selections

Critical Feature (7−10)

Irrelevant Feature (1−2)

Redundant Feature (3−6)

Figure 9: Evaluation of the Feature Selection Method for Color Categories. Illustration of the selected
features of three representative color categories, where one easy, one average and one difficult category was selected.
For this visualization ten different cLVQ networks are trained and the selected features of each category together
with the scoring values are saved. The selected features of each category are sorted and color-coded based on the
total number of occurrences in these ten runs, while the bar height correspond to the feature score of these selected
features. All features that occurred at least 7 times (green) are considered as critical for the representation of this
category, while feature occurrence of less than 3 time (red) are probably irrelevant or even wrong. Finally features
that are selected 3-6 times (blue) indicate redundant feature sets, with similar representational capacity. Beside
the occurrence of each feature the total number of selected features indicate the difficulty of the category. This is
especially visible for the worst color category “white”. Nevertheless even for this category the correct color feature
is selected in all test runs.

22

Category Phone

F
ea

tu
re

 S
co

rin
g

7 45 3 2

F
e

a
tu

re
 S

co
ri
n

g

9 7 45 3 2 1

Category Cup

F
ea

tu
re

 S
co

rin
g

1

F
ea

tu
re

 S
co

rin
g

7 6 5 4 3 2

Category Animal

F
ea

tu
re

 S
co

rin
g

1

Number of Feature Selections

Number of Feature Selections

Number of Feature Selections

...

...

Critical Feature (7−10)

Redundant Feature (3−6)

Irrelevant Feature (1−2)

Number of Feature Selections

Number of Feature Selections

Number of Feature Selections

Figure 10: Evaluation of the Feature Selection Method for Shape Categories. Illustration of the selected
features of three representative shape categories, analogously to Fig. 9. Surprisingly not all shape categories are more
difficult than the color categories. This becomes clear if one compares the category “cup” with “white” depicted
in Fig. 9. Furthermore many stable selected features have low scoring values, which indicate only little category
specificity. This indicates that for shape categories only the combination of several features allow a stable category
representation.

23

general and less category-specific, but in combination with other features allows a robust category
detection.

5. Discussion

We have proposed an architecture for fast interactive life-long learning of arbitrary categories
that is able to perform an incremental allocation of cLVQ nodes, automatic feature selection and
feature weighting. This automatic control of the architecture complexity is crucial for interactive
and life-long learning, where an exhaustive parameter search is not feasible. Additionally we
use the proposed wrapper method for incremental feature selection, because the representation
of categories should use as few feature dimensions as possible. This can not be achieved with
simple filter methods, where typically only a small amount of redundant or noisy features are
eliminated. The used feature selection method enables the cLVQ to separate co-occurring categories
and allows a resource efficient representation of categories, which is beneficial for fast interactive
and incremental learning of categories. Recently a variant of an embedded feature selection method
for LVQ networks was proposed by Kietzmann et al. (2008) based on the GRLVQ method (Hammer
& Villmann, 2002) which was called iGRLVQ. This method iteratively removes features with small
weighting values λ. For our categorization task this proposed backward feature selection method is
not suitable because a low λ value at a certain learning epoch does not imply that this feature can
not become useful at a later learning stage. Unfortunately removed features can not be readded
to the corresponding iGRLVQ network at a later learning stage, especially if the reduction of
computational costs is targeted. Additionally the definition of a stopping condition for the feature
pruning is difficult to determine a priori, so that Kietzmann et al. (2008) prespecified the final
feature dimensionality. Finally the required computational costs are considerably higher compared
to forward feature selection methods. Although the cLVQ enables interactive learning compared to
the SVM there is still potential for improving the categorization performance of shape categories.
Therefore the incorporation of some basic ideas from SVM into our feature weighting and selection
framework is a promising direction for future work.

In contrast to many other categorization approaches our model is able to learn multiple cate-
gories at once, while commonly the categories are trained individually (Fritz et al., 2005; Fei-Fei
et al., 2007). We applied our learning method to a challenging categorization task, where the ob-
jects are rotated around the vertical axis. This rotation causes much higher appearance changes
compared to many other approaches dealing with canonical views only (Leibe et al., 2004). In
contrast to this our exemplar-based method can deal with a larger within-category variation, which
we consider crucial for complex categories. Furthermore we recently could show that our proposed
cLVQ learning method can be integrated into a larger vision system that allows online learning of
categories based on hand-held and complex-shaped objects under full rotation (Kirstein et al., 2008,
2009). This means our cLVQ approach does not only scale well to higher feature dimensionalities,
but also to more complex categorization tasks in unconstrained environments.

Acknowledgment: The authors thank Stephan Hasler for providing the visualization for the
parts-based features.

References

Agarwal, S., Awan, A., & Roth, D. (2004). Learning to detect objects in images via a sparse,
part-based representation. IEEE Transaction Pattern Analysis and Machine Intelligence 26(11),
1475–1490.

Arsenio, A. M. (2004). Developmental learning on a humanoid robot. In Proc. International Joint
Conference on Neuronal Networks (IJCNN), pp. 3167–3172.

24

Bagnall, R. G. (1990). Lifelong education: The institutionalisation of an illiberal and regressive
ideology? Educational Philosophy and Theory 22(1), 1–7.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. B. (1992). Fuzzy
ARTMAP: A neural network architecture for incremental supervised learning of analog multidi-
mensional maps. IEEE Transaction on Neural Networks 3(5), 698–712.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine Learning 20(3), 273–297.

Fei-Fei, L., Fergus, R., & Perona, P. (2003). A Bayesian approach to unsupervised one-shot learning
of object categories. In Proc. International Conference on Computer Vision (ICCV), pp. 1134–
1141.

Fei-Fei, L., Fergus, R., & Perona, P. (2007). Learning generative visual models from few training
examples: An incremental Bayesian approach tested on 101 object categories. Computer Vission
and Image Understanding 106(1), 59–70.

Fergus, R., Perona, P., & Zisserman, A. (2003). Object class recognition by unsupervised scale-
invariant learning. In Proc. Computer Vision and Patern Recognition (CVPR), Volume 2, pp.
264–271.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classification.
Journal of Machine Learning Research, 3, 1289–1305.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences 3(4), 128–135.

Fritz, M. (2008). Modeling, Representation and Learning of Visual Categories. Ph. D. thesis,
Technical University of Darmstadt.

Fritz, M., Kruijff, G.-J. M., & Schiele, B. (2007). Cross-modal learning of visual categories using
different levels of supervision. In Proc. International Conference on Vision Systems (ICVS).

Fritz, M., Leibe, B., Caputo, B., & Schiele, B. (2005). Integrating representative and discriminative
models for object category detection. In Proc. International Conference on Computer Vision
(ICCV), Volume 2, pp. 1363–1370.

Fritzke, B. (1995). A growing neural gas network learns topologies. In G. Tesauro, D. S. Touretzky,
& T. K. Leen (Eds.), Advances in Neural Information Processing Systems 7, Cambridge MA,
pp. 625–632. MIT Press.

Furao, S. & Hasegawa, O. (2006). An incremental network for on-line unsupervised classification
and topology learning. Neural Networks 1(19), 90–106.

Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., & Haussler, D. (2000).
Support vector machine classification and validation of cancer tissue samples using microarray
expression data. Bioinformatics 16(10), 906–914.

Guyon, I. & Elissee, A. (2003). An introduction to variable and feature selection. Journal of
Machine Learning Research, 3, 1157–1182.

Hamker, F. H. (2001). Life-long learning cell structures–continously learning without catastrophic
interference. Neural Networks, 14, 551–573.

25

Hammer, B. & Villmann, T. (2002). Generalized relevance learning vector quantization. Neural
Networks 15(8-9), 1059–1068.

Harris, C. & Stephens, M. (1988). A combined corner and edge detector. In Proc. Alvey Vision
Conference, pp. 147–151.

Hasler, S., Wersing, H., & Körner, E. (2007). A comparison of features in parts-based object recog-
nition hierarchies. In Proc. International Conference on Artificial Neural Networks (ICANN),
pp. 210–219.

Heisele, B., Serre, T., Pontil, M., Vetter, T., & Poggio, T. (2001). Categorization by learning and
combining object parts. In Proc. Advances in Neural Information Processing Systems (NIPS),
pp. 1239–1245.

Kadir, T. & Brady, M. (2001). Saliency, scale and image description. International Journal of
Computer Vision 45(2), 83–105.

Kietzmann, T. C., Lange, S., & Riedmiller, M. (2008). Incremental GRLVQ: Learning relevant
features for 3D object recognition. Neurocomputing 71(13–15), 2868–2879.

Kira, K. & Rendell, L. A. (1992). The feature selection problem: Traditional methods and a
new algorithm. In Proc. Association for the Advancement of Artificial Intelligence (AAAI), pp.
129–134.

Kirstein, S., Denecke, A., Hasler, S., Wersing, H., Gross, H.-M., & Körner, E. (2009). A vision
architecture for unconstrained and incremental learning of multiple categories. Memetic Com-
puting 1(4), 291–304.

Kirstein, S., Wersing, H., Gross, H.-M., & Körner, E. (2008). An integrated system for incremental
learning of multiple visual categories. In Proc. International Conference on Neural Information
Processing (ICONIP), pp. 811–818. Springer.

Kirstein, S., Wersing, H., & Körner, E. (2008). A biologically motivated visual memory architecture
for online learning of objects. Neural Networks, 21, 65–77.

Kohavi, R. & John, G. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97,
273–324.

Kohonen, T. (1989). Self-Organization and Associative Memory. Springer Series in Information
Sciences, Springer-Verlag, third edition.

Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation
with an implicit shape model. In ECCV workshop on statistical learning in computer vision, pp.
17–32.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision 60(2), 91–110.

Martinetz, T., Labusch, K., & Schneegaß, D. (2009). SoftDoubleMaxMinOver: Perceptron-like
Training of Support Vector Machines. IEEE Transactions on Neural Networks 20(7), 1061–1072.

McCloskey, M. & Cohen, N. (1989). Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation, 24, 109–164.

26

Mikolajczyk, K., Leibe, B., & Schiele, B. (2006). Multiple object class detection with a generative
model. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Ng, A. Y. & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of
logistic regression and naive Bayes. In Proc. Advances in Neural Information Processing Systems
(NIPS), pp. 849–856.

Opelt, A., Fussenegger, M., Pinz, A., & Auer, P. (2004). Weak hypotheses and boosting for generic
object detection and recognition. In Proc. European Conference on Computer Vision (ECCV),
Volume 2, pp. 71–84.

Ozawa, S., Toh, S. L., Abe, S., Pang, S., & Kasabov, N. (2005). Incremental learning of feature
space and classifier for face recognition. Neural Networks 18(5-6), 575–584.

Perkins, S., Lacker, K., & Theiler, J. (2003). Grafting: Fast, incremental feature selection by
gradient descent in function space. Journal of Machine Learning Research, 3, 1333–1356.

Polikar, R., Udpa, L., Udpa, S., & Honavar, V. (2001). Learn++: An incremental learning al-
gorithm for supervised neural networks. IEEE Transactions on System, Man and Cybernetics
(C) 31(4), 497–508.

Roth, P. M., Donoser, M., & Bischof, H. (2006). On-line learning of unknown hand held objects
via tracking. In Proc. Second International Cognitive Vision Workshop (ICVW).

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning 5(2), 197–227.

Skočaj, D., Berginc, G., Ridge, B., Štimec, A., Jogan, M., Vanek, O., Leonardis, A., Hutter, M.,
& Hewes, N. (2007). A system for continuous learning of visual concepts. In Proc. International
Conferance on Vision Systems (ICVS).

Skočaj, D., Kristan, M., & Leonardis, A. (2008). Continuous learning of simple visual concepts
using incremental kernel density estimation. In Proc. International Conference on Computer
Vision Theory and Applications (VISAPP), Funchal, Madeira, Portugal, pp. 598–604.

Steels, L. & Kaplan, F. (2001). AIBO’s first words. The social learning of language and meaning.
Evolution of Communication 4(1), 3–32.

Swain, M. J. & Ballard, D. H. (1991). Color indexing. International Journal of Computer Vi-
sion 7(1), 11–32.

Thomas, A., Ferrari, V., Leibe, B., Tuytelaars, T., Schiele, B., & Gool, L. V. (2006, June). Towards
multi-view object class detection. In Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), New York, USA.

Viola, P. & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features.
In Proc. IEEE Conference on Computer Vision and Pattern Recogntion (CVPR), pp. 511–518.

Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Goerick, C., Steil,
J., Ritter, H., & Körner, E. (2007). Online learning of objects in a biologically motivated
architecture. International Journal of Neural Systems, 17, 219–230.

Wersing, H. & Körner, E. (2003). Learning optimized features for hierarchical models of invariant
object recognition. Neural Computation 15(7), 1559–1588.

27

Willamowski, J., Arregui, D., Csurka, G., Dance, C. R., & Fan, L. (2004). Categorizing nine visual
classes using local appearance descriptors. In Proc. ICPR Workshop on Learning for Adaptable
Visual Systems.

Yang, Y. & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization.
In Proc. International Conference on Machine Learning, pp. 412–4120.

28

A. Pseudocode Notation of the cLVQ Approach

Initialize Sc = ∅ for ∀c

1. Update training set T = T\T oldest ∪ T new

2. Update hcf =
Hcf

Hcf+H̄cf
with (Φ as Heaviside function):

Hcf := Hcf +
∑

i∈Tnew Φ(tic) ∗ Φ(x
i
f) and

H̄cf := H̄cf +
∑

i∈Tnew Φ(−tic) ∗ Φ(x
i
f) //(see Eq.5,6,7)

3. Initialize each new category c

if Sc = ∅ and ∃ tic = 1

• vc = argmaxf (hcf) //feature with highest scoring value

• j = argmaxi∈T (x
i
vc
) //xj, where feature has highest activity

• K = K + 1 and wK = xj; uK
c = 1 else uK

S 6=c = 0 //insert node

• Sc := Sc ∪ {vc} //add feature

4. Setup selection lists

• Initialize Pc = {1, ..., F}\Sc //list of insertable features

• Initialize Qc = Sc //list of removable features

5. cLVQ optimization loop (see Fig.2)

• LVQ node update and error counting

– for all i ∈ T

∗ if kmin(c) exists, update wkmin(c) //(see Eq.2,3)

∗ Compute E+
c and E−

c //(see Eq.8,9)

• for all c with #E+
c ∪#E−

c = ∅ //add or remove feature

– if #E+
c ≥ #E−

c //higher amount of detection errors

∗ Compute e+cf //(see. Eq.10)

∗ Choose vc = argmaxf∈Pc
(hcf + e+cf)

∗ Sc := Sc ∪ {vc} //add feature

∗ Store Epre
c = #E+

c +#E−
c

∗ Recompute Epost
c = #E+

c +#E−
c with added vc

∗ if Epre
c − Epost

c > ǫ1 //add feature permanently

· Keep vc; Pc = Pc\{vc}

∗ else //remove and exclude feature

Sc = Sc\{vc}; Pc = Pc\{vc}

– else //higher amount of rejection errors

∗ Compute e−cf =
∑

i∈E−

c
Φ(xi

f)/
∑

i∈E−

c
1

∗ Choose vc = argmaxf∈Qc
(hcf + e−cf)

∗ Sc := Sc\{vc} //remove feature

∗ Store Epre
c and compute Epost

c

∗ if Epre
c − Epost

c ≤ ǫ1 //readd and exclude feature

Sc := Sc ∪ {vc}; Qc = Qc\{vc}

• Add new nodes

– Initialize Z = {c|E+
c ∪ E−

c 6= ∅} //erroneous c list

29

– K0 = K //number of nodes before insertion step

– for all i ∈ T //collect errors per xi

∗ F i = {c|i ∈ E+
c ∪ E−

c 6= ∅}

– while Z 6= ∅ //select vector with most errors, where at least for one

category no node was inserted so far

∗ j = argmax{i|F i∩Z 6=∅}#F i

∗ K = K + 1; wK = xj; //insert node

∗ uK =

{

tjc : j ∈ E+
c ∪ E−

c

0 : else
. //set target vector

∗ Zj = {c|tjc 6= 0}; Z := Z\Zj

– Store Epre
c and compute Epost

c

– for all c

if Epre
c − Epost

c ≤ ǫ2

Set uk
c = 0 ∀k > K0

– if uk
c = 0 for ∀c

Remove node k //node does not contribute to any category

• Stop condition //no errors or no insertable features left

– if E+
c ∪ E−

c = ∅ or Pc = ∅ ∀c

goto Step 1 //start new learning epoch

– else

goto Step 5 //test new features and nodes

30

